

遅れた方には申し訳ないことでしたが、座席の数が足りずご遠慮いただかざるを得ませんでした。当日の参加者(五十音順、敬称略、所属は定年時)は井村久則(金沢大学)、小熊幸一(千葉大)、楠文代(東京薬科大)、澤田清(新潟大)、田端正明(佐賀大)、角田欣一(群馬大)、中村洋(東京理科大)、長谷川佑子(東京理科大)、藤原祺多夫(東京薬科大)、保母敏行(都立大)、保母政子、松本和子(早稲田大)、本水昌二(岡山大)、矢野良子(東京高専)の14名でした(写真1)。

── インフォメーション ─

長谷川亭パーティー人生談話会 ~亭主を励ます会の巻~

(公社)日本分析化学会(JSAC)をプラットフォームにした 正式な集まりとしては、支部と研究懇談会が代表的です. これ に対して、ISAC の会員から成るアングラ的な集まりの一つに 表題の会があり、専門や学部を超えた方々が年に1回ほど長 谷川佑子先生のお宅に集まることを10年以上続けています. アングラ的と表現したのは、個人のお宅を会場としているた め、「ぶんせき」誌上に参加者募集の会告が出せないからです. この会の起源に関しては詳らかではありませんが、長谷川先生 のご記憶では『中村ラインが発端で多分、分析化学討論会か年 会の懇親会かで中村先生と周りにいた方(私もいたはず)とで 話がまとまったのだと思います』とのことです、そう言われて みれば、状況的には20種類くらいの人生談話会が発足した段 階で、ヒューマンネットワーク構築の観点から積極的なご参加 を私が会員に呼びかけた 2009 年頃1) かもしれません. いずれ にせよ, 2014年3月17日には「パーティー人生談話会」(長 谷川佑子会長)として開催されており、参加者は赤岩英夫先生 (群馬大)を始め、現在とほぼ同じメンバーとなっており、富 永 健先生(東大)も参加されておられました。また、ある年 の夏には、エレベーターで長谷川邸の4階屋上に出て、遠く の花火大会を楽しんだことも懐かしい想い出です.

さて、JSAC・高齢会員の正式な会としては2010年に発足した生涯分析談話会があり、地区の重鎮からありがたい講演を伺った後、情報交換会を行っています。これに対して、表題の会では長谷川先生と赤岩先生の人脈で気が置けない仲間が長谷川先生宅に集まり、お手製の美味しい料理と飲み物をいただきながら、とりとめもない話をして人生を楽しんでいます。昨年の集まりでは、長谷川先生が腰を痛められた状態で亭主を務められていた記憶が強かったため、今回の集まりは~亭主を励ます会の巻~と副題を付けた次第です。今年の5月に愛媛大学で行われた第85回分析化学討論会(5/31~6/1)の折、有志の間で討論会と年会の間に長谷川亭パーティーを開こうと計画しました。ところが、今年は最適月の7月も猛暑が衰えず、やむなく8月27日(水)の13:30から~亭主を励ます会を始める事を関係者にメールでお知らせしました。参加申し込みが

写真 1 参加者の集合写真 (井村先生によるスマホの自動撮影)

長谷川亭パーティーの特徴は、毎回食べ切れないほどさまざ まな料理を出して戴き、宴席の後ろの酒蔵には誰かが何年か前 にお土産に持参した吟醸酒, 純米酒, ワイン, ウイスキー, モ ンゴル酒などがごろごろ並べられており、お好みを勝手に選ん で飲める満足感と開放感を味わえることです(特にお強いのは 保母先生と本水先生). 今年のオープニングは、井村先生が シャンパンを開封し、保母先生の乾杯の音頭で始まりました. 着席した卓上には隙間なくさまざまな料理が並べられており. 自然にあちこちで歓談が始まりました。ちなみに、長谷川先生 が連日の猛暑日に耐えて調理してくださったメニューは以下の 9種類でした:1. たたき胡瓜の甘酢和え、2. 五目炒り豆腐、 3. 肉団子の黒酢餡、4. アボガドディップのサーモンのせ、5. アスパラのサラダ&蟹玉クリームソース. 6. こんにゃくの炒 め、7. トマトと海老の卵炒め生姜餡、8. しゅうまい、9. 酢 豚パイナップル入り. これらに加え, 女性陣が持参された手料 理や果物、男性陣からのアルコール類、地方のお土産などで テーブルが賑わいました (写真2参照). 長谷川亭のメニュー は、ご本人によると『初期の頃は江上料理学院で習ったノート を見ながらメニューを考え、今よりずっと手の込んだものをお 出ししていたようですが、今は簡単料理ばかりで大いに反省』 と謙遜されていますが、参加者が毎回大いに満足して帰られる のが、私が「長谷川亭」と言い出した所以です.

パーティーのご案内をメンバーに差し上げた頃、長谷川先生から『もうこれで最後のパーティーかも知れないから、ぜひ大勢に集まっていただきたいです』と気弱なメールを受け取りました。想い返しますと、筆者が初めて長谷川邸に伺ったのは、

3.5んせき 2025 11

写真 2

(保母先生による料理群の撮影.向かって左手前が厨房,右手 奥が洒蔵)

理科大に赴任(1994年)してまもなく、理学部の関根達也先 生がオーガナイズした分析科学セミナーに講師として招かれた 日でした. セミナー終了後, 集められた講師・スタッフに関根 先生が労いの言葉をかけられ、30分ほどであっけなく慰労会 が終わってしまいました. ここで、セミナー参謀役の長谷川先 生が夕餉の時刻であったこともあり TPO を気遣われたのか、 同じく講師を務められた本水先生と酒井忠雄先生 (愛知工大) を誘ってわれわれ3名を車でご自宅に連行し、ありがたいこ とに夕飯から翌日の朝食まで振舞ってくださったのでした。ち なみに、長谷川邸に逗留されたのは日本人ばかりではなく、長 谷川先生の留学先のボスである Prof. Gregory R. Choppin (フ ロリダ州立大、FSU) や日露分析化学シンポジウム関係で来日 された Prof. B. F. Myasoedoy (ロシア科学アカデミー) もお世 話になったとお聞きしています、料理を作ることをこよなく楽 しみ、人が集まることを無邪気に喜ばれる長谷川先生が、来年 以降は手作り料理の心配をせず、会長としてお元気でパー ティー人生談話会の亭主を務めてくださることをメンバー一同 心より祈念しております.

1) 中村 洋: ぶんせき (Bunseki), 2009, 387-388.

〔東京理科大学 中村 洋〕

•

2025 年度 CERI クロマトグラフィー分析賞受賞者

本賞は、(公社)日本分析化学会・液体クロマトグラフィー研 究懇談会(LC 懇)が「液体クロマトグラフィーを利用した研究 分野で優秀な研究成果を挙げた者に授与する」と規定する褒賞 であり、(一財)化学物質評価研究機構 (Chemicals Evaluation and Research Institute, Japan, CERI) の協力を得て 2018 年度 より運用を開始している。2025年度は、本年8月末日を期限 として候補者の推薦公募を行った. 期日までに提出された候補 者の推薦理由書, 研究業績等を基に, 選考委員会 (9月1日) で審議した結果、LC懇アドバイザーを務める元帝京大学薬学 部教授の馬渡健一氏(推薦者:筆者)を受賞候補者として選出 した. 2025 年度 LC 懇第 6 回拡大運営委員会 (9 月 19 日) に おいて、選考委員長より上申された上記結果を協議した結果、 馬渡氏への授賞が正式に承認された. 馬渡氏の研究業績名は. 「光照射反応と蛍光検出 HPLC システムによる生体成分及び薬 物定量法の開発」である.以下,馬渡氏の研究歴に触れた後, 授賞の対象となった研究業績の概要を紹介する.

研究業績の概要

馬渡氏は1978年4月に帝京大学薬学部に入学し、1982年に 大学院薬学研究科博士課程(前期)にて渡邉光夫教授の指導の 下. トリプトファン代謝産物の熱反応による蛍光誘導体化の テーマで研究を行った. その後, 横浜市衛生研究所変異原室へ の就職を経て1986年, 帝京大学薬学部薬品分析学研究室に助 手として採用され、キヌレン酸を過酸化水素共存下で光照射す ると強い蛍光を示すことを見いだした. 当時, 市販品が出始め た HPLC 装置と蛍光検出器を組み合わせ、今まで測定が困難 であった血清中キヌレン酸の測定方法の開発を行い注目され た. さらにトリプトファン代謝物および類似構造を持つ薬物の 光誘導体化反応による HPLC 測定法に関する研究で成果を収 め、「過酸化水素・光照射蛍光定量法の開発」の題目で1993 年に東京大学大学院薬学研究科で博士(薬学)を取得した。そ の後も光誘導体化の研究を行い、渡邉光夫教授の定年退職に 伴って 2002 年に新たに赴任した中込和哉教授の下、2-ピリジ ンカルボン酸が酢酸亜鉛共存下で光照射すると発蛍光する方法 を見いだすとともに、包接能を有する 18-Crown-6 を移動相へ 添加する分離方法の開発にも成功した. 中込教授が定年退職し てからは、薬学教育センター・基礎実習ユニットの教授に昇進 し、医薬品分析学研究室を兼任しながら分離方法の研究を進 め、高極性化合物であるキノリン酸とピコリン酸の分離分析に も成功している.

さて、馬渡氏の液体クロマトグラフィー分野での研究は、トリプトファン代謝物であるキヌレン酸の測定法の開発から始まった。1987年当時、キヌレン酸の測定は難しく尿試料では前処理を何段階か組み合わせて用手法により測定がなされていて、血清試料の測定には有効な定量法がなかった。ところが、キヌレン酸は過酸化水素共存下でブラックライトを照射すると強い蛍光を示すことを見いだした。この反応を HPLC に応用するために、移動相に 35 mmol/L 過酸化水素とメタノールを

ぶんせき 2025 11 437

添加し、分離カラムと 300~400 nm の波長の光源(蛍光管) となるブラックライトにテフロンチューブを巻き付けた光照射 装置を取り付けて蛍光検出するシステムを創案し、血清中や尿 中キヌレン酸の測定方法を確立することができた. さらに、ト リプトファン代謝物の発蛍光反応を調べると代謝経路ごとに反 応条件の設定が可能であることが判明し、キヌレニン経路では 過酸化水素・メタノール共存下に、セロトニン経路の5-ヒド ロキシインドール化合物では塩基性下でアセトニトリルの共存 下で、また、5-メトキシインドール化合物は過酸化水素とア セトニトリル共存下で、それぞれ光照射反応による蛍光定量を 可能とした. これらの定量法は, 反応条件と分離条件を整合さ せて HPLC に応用し、原則としてポンプ 1~2 台を用いた光照 射反応システムにより、①移動相への試薬の添加、②各種カラ ムによる分離, ③蛍光誘導体化, ④蛍光検出, の4段階で測 定物質に対して特異性の高い方法であった. その結果, 検出感 度の向上により血清は除タンパクのみ、尿は希釈のみで定量が 可能となった. また、本法をトリプトファン代謝物と類似構造 を有する薬物の血中や尿中濃度の測定法に応用し、たとえば、 5-メトキシインドール誘導体であるインドメタシン(抗炎症 剤) の血清中濃度、ナフチリジン骨格を有するナリジクス酸 (尿路感染症治療薬)の尿中濃度の測定法を開発した.また. ピリジンカルボン酸誘導体であるイソニアジド(抗結核薬)の 尿中代謝物量を定量することで不活性化指数を求め、アセチル 化能フェノタイプ判定方法を開発した.

分離技術については、18-Crown-6を移動相に添加して、吸着力の強いカラムで N¹-メチルニコチンアミドを定量する際、ピーク形状の補正やクロモンの2量体であるクロモグリク酸ナトリウム (抗アレルギー薬) の単量体との分離を可能にする方法を開発した。クラウンエーテルを活用したこの分離法は、後日、キヌレニンとキヌレン酸の同時定量において、キヌレン酸の保持時間をカリウムイオン濃度の調節により自由に動かすことを可能とし、キヌレニンとの同時定量法を確立に繋がった。さらに、2-ピリジンカルボン酸誘導体については、酢酸亜鉛共存下で光照射により蛍光を発することを見出し、納豆中の有用成分であるジピコリン酸の定量法に応用できた。以上、馬渡氏は光照射を用いた蛍光誘導体化反応とともに HPLC の分離技術を開発することで、多数の有用な定量法の開発に成功している。

LC 分野における継続的な教育的社会貢献

一方、馬渡氏に関しては、出身大学の卒業生として講師以上に昇進した初めての例と聞き及んでいる。この話は研究能力もさりながら、温厚な人柄に加え教育者としての資質が認められた結果であろう。薬学教育モデル・コア・カリキュラム中の学生の研究においても、学生とともに研究を進め、日本薬学会年会やLC研究懇談会が主催するLCテクノプラザなどの発表の場において、学生に積極的に発表させることに代表される。一貫した啓育的な姿勢が高く評価された結果と思われる。事実、馬渡氏のグループは長年に渡るLCテクノプラザの歴史においても、たびたびベストプレゼンテーションを受賞しており、LC研究懇談会への著しい貢献により、馬渡氏は同懇談会のアドバイザーを委嘱されている。

以上のように、馬渡健一氏の誘導体化 HPLC 分野の発展に対する技術的・学術的貢献、並びに本研究懇談会を中心とする学会活動を通じた教育的・社会貢献は高く評価され、CERI クロマトグラフィー分析賞授賞に相応しい人物と評価された.

なお、馬渡氏の業績に関する詳細は、LC 研究懇談会の電子ジャーナル「LC と LC/MS の知恵」第11号(2025年12月15日発行予定)に掲載し、受賞講演と表彰・副賞の授与は第31回 LC & LC/MS テクノプラザの初日(2026年2月18日、北とぴあ・ペガサスホール)に行う予定である。2025年9月20日記。

〔液体クロマトグラフィー研究懇談会・委員長 中村 洋〕

2025 年液体クロマトグラフィー科学遺産認定

(公社)日本分析化学会・液体クロマトグラフィー研究懇談会 (LC 懇) は、2018 年度より「液体クロマトグラフィー科学遺 産」の認定事業を開始し、8年目の本年は8月末日を期限とし て推薦公募を行った. 期日までに提出された複数の推薦書につ き、2025年液体クロマトグラフィー科学遺産認定委員会(9 月9日) で審議した結果,太田茂徳氏(LC 懇個人会員番号: LC1A23004, ジーエルサイエンス(株) 推薦の「HPLC 用カラ ム Inertsil シリーズ」(所有者:ジーエルサイエンス(株)) を液 体クロマトグラフィー科学遺産第8号候補として選出した. 2025 年度 LC 懇第 6 回拡大運営委員会 (9 月 19 日) において、 認定委員会委員長より上申された上記結果を審議し、これを承 認した.「液体クロマトグラフィー科学遺産」とは、その認定 に関する規定第2条に、「日本における液体クロマトグラフィー の発展にとって、歴史的な観点から顕著な貢献があったと認め られるものを指す」と定義されている. 認定第8号となった 「HPLC 用カラム Inertsil シリーズ」の認定理由の概要を以下 に示す

HPLCカラムの開発において、吸着の要因となる母体シリカゲル中の残存シラノール量の軽減は、対象物質をシャープに溶出するためには必須な技術である。ジーエルサイエンス(株は「Inert」、すなわち不活性の名を冠した HPLCカラム Inertsil を長年にわたり開発、発表してきた、創業当時ガスクロマトグラフィー用充填剤の開発からスタートしたガスクロ工業(ジーエルサイエンスの前身)は、固定相担体に用いられる表面処理技術、評価方法を蓄積していた。その技術を液体クロマトグラフィー用充填剤開発に適応させ、高い不活性度処理を施したシリカゲルを特徴とした初代の Inertsil ODS を 1986 年に発表した。その後さらに不活性度を向上させ、高純度シリカゲルを母体とした Inertsil ODS-2 を 1987 年に発表した。

分析目的成分を効果的に分離させるには、一般的に保持が強いカラムほど有利であり、ODS 結合量を増やすほど保持が強くなる傾向にある。一方で結合層が厚くなりすぎると、理論段数が低下したり、水溶液の割合が多い溶離液では保持が得られなくなったりするなど、種々の問題が生じてしまう。これらの問題を解消する一つの方法として、表面積の大きい母体を用いることが挙げられ、高純度テトラエトキシシランを用いたゾル-ゲル法にて、自社オリジナルのシリカゲルを新規開発し、

3がんせき 2025 11

1994年に Inertsil ODS-3を発表した. 残留金属が極めて少ないシリカゲルから作製された ODS カラムは、金属配位性化合物もシャープに溶出し、かつ効果的なエンドキャップ処理により、残存シラノール量も大幅に低減、高分離、高耐久、高不活性を実現している. さらに、この新規母体を活用し、修飾密度の変更を行ったカラムや、フェニル基、HILIC 用の官能基を結合したさまざまなカラムを Inertsil シリーズとしてラインアップし続けている. ここで、母体のシリカゲルから製品フォローまですべて自社で行うというコンセプトを基に、シリカゲルの不活性化処理の改善改良に努め、長年にわたり、液体クロマトグラフィーの発展に貢献してきた同社の実績はユーザーの信頼に応えるものである. また、品質が安定した製品を提供し続けてきた事実は、液体クロマトグラフィー科学遺産に値されるものと高く評価された

なお、認定第8号に関する詳細は、LC 研究懇談会の電子ジャーナル「LC と LC/MS の知恵」第11号 (2025年12月15日発行予定) に掲載し、認定講演と表彰は第31回 LC & LC/MS テクノプラザの初日に行う予定である (2026年2月18日、北とぴあ・ペガサスホール、東京都北区)、また、2025年の認定委員会委員は以下の11名である (◎印:委員長):伊藤誠治 (東ソー)、井上剛史 (北浜製作所)、榎本幹司 (栗田工業)、太田茂徳 (ジーエルサイエンス)、岡橋美貴子 (臨床検査基準測定機構)、熊谷浩樹 (LC シニアクラブ)、清水克敏(日立ハイテクサイエンス)、竹澤正明 (東レリサーチセンター)、◎中村 洋 (東京理科大学)、西岡亮太 (LC シニアクラブ)、三上博久 (島津総合サービス)、2025年9月20日記.

〔LC 研究懇談会・委員長 中村 洋〕

2026年液体クロマトグラフィー努力賞

標記努力賞は1995年、液体クロマトグラフィー研究懇談会に制定された若手・中堅会員に対する褒賞制度であり、「液体クロマトグラフィーに関する研究・技術が独創的であり、将来を期待される研究者・技術者が受賞の対象」とされている。今回は2025年8月末日を期日として推薦を募った。2025年9月2日より開催された標記授賞候補者選考委員会において協議した結果、(株)日立ハイテクアナリシス所属の清水克敏氏(推薦者:熊谷浩樹氏、LCシニアクラブ)を受賞候補者に決定した。この結果を2025年度第6回拡大運営委員会(9月19日)に上申・協議した結果、清水氏への授賞を正式に決定した。研究業績名は「UHPLCの感度特性と分離特性の関係に関する研究、及び食品評価法の開発」である。以下、清水氏への授賞対象となった研究業績の概要を紹介する。

清水氏は、㈱日立サイエンスシステムズ(現日立ハイテクアナリシス)に入社後、一貫して HPLC および UHPLC のアプリケーション開発やシステム開発等に従事してきた。特に、UHPLC の感度特性と分離特性の関係について考察し、UHPLC 特有の作用があることを明らかにした。また、食品および飲料を対象として HPLC を含む各種分析手法による分析データの評価に関しても、成果を発表している。以下に、詳細を記す。

1) UHPLC の感度特性と分離特性の関係

UHPLC (Ultra High Performance Liquid Chromatography) はいかに高感度に寄与するのか、単にカラム断面積を縮小するセミミクロ LC 化による移動相の体積縮減だけでは説明できない UHPLC 特有の効果が潜んでいると考えられる。UHPLC は粒径 2 μm 前後の微細充塡剤を用いることにより、高速化、高分離化を図る HPLC である。充塡剤の微細化はカラム圧の上昇を伴うため、60 MPa 以上の耐圧を有する分析システムが必要となった。UHPLC システムは、高速・高分離化以外に高感度化にも貢献すると言われている。その理由を検討するために、清水氏は感度特性を可視化する手法を検討した。

HPLCの分離特性を可視化する方法はいくつか報告されており、たとえば、線速度 u0 (m/s) とカラム長 L (m) を操作条件として、分離特性を示す理論段数 N を z 軸とする 3 次元グラフがある。検討した手法では、先ず z 軸の分離特性を感度特性に置き換えたような操作条件 u0 と L の 3 次元グラフを作成する。次に 3 番目の操作変数としてカラム充塡剤の粒径 dP (μm) を導入して検討を拡張する。最終的に、分離特性を示す N と dP を入力変数として、感度特性を z 軸として出力とする 3 次元グラフを生成することにより、分離特性と感度特性の関係を同時に可視化することができた。さらに、同様な 3 次元グラフをいくつか用いることにより関連する変数の関係も解析できた。とりわけ、z 軸を圧力損失とする可視化は、UHPLC の分析条件最適化に有用であることがわかった。

UHPLC の感度特性を可視化した結果、感度特性に関する因子には2種類あることがわかった.一方はカラム断面積を縮小する所謂セミミクロ LC 化の因子であり,他方は新たに感度指標として導入した高長積 Σ からの寄与である.理想的には前者のセミミクロ LC 化は分離特性には影響しないが, Σ は分離特性の N と相反関係にある.一定の N を確保する条件で望小特性の Σ を改良するためには,粒径を小さくする必要がある.この関係を可視化するために N と粒径を入力底平面として, Σ を z 軸とする 3 次元グラフを表示した.また,同一底平面上の z 軸を圧力損失に替えて, Σ に連動する圧力の上昇度も可視化できた. Σ の改良には,UHPLC を特徴づける充塡剤の微細化とそれに伴う圧力の印加が不可欠であることが理解できた.

2) HPLC を含む各種分析手法による食品評価法の開発

日本酒は米、米麹及び水を原料として発酵させたアルコール 飲料であり、アミノ酸や有機酸、糖類、ミネラルなどさまざま な微量成分が含まれている。日本酒の味わいを評価する目安と して、糖類などを中心とした成分の比重を示した日本酒度、有 機酸量を示した酸度、約20成分のアミノ酸量を示したアミノ 酸度がある。日本酒の味わいは、これらの数値とアルコール度 数などが組み合わされて判断されるが、個々の化合物との関連 を調べた例は多くない。そこで、清水氏は日本酒の呈味にかか わる糖、有機酸、アミノ酸を高速液体クロマトグラフおよびア ミノ酸分析計を用いて分析し、定量結果から味わいとの関係性 を調べた。その結果、糖は、大部分をグルコースとイソマル トースが占めた。また、麹を使用した発酵食品に特徴的にみら れるコージビオースを検出した。有機酸では、乳酸やコハク酸

ぶんせき 2025 11 439

などの日本酒に代表的に含まれる有機酸が検出された. アミノ 酸については、甘味を示すアラニンがアミノ酸総量の12~18 % 含まれており、糖だけでなくアミノ酸も日本酒の味わいに 関与していることが示唆された. これらの分析結果と味わいと の相関を確認するため、呈味に関与する成分をレーダーチャー トにまとめたところ、形状が大きく2タイプに分類された。こ の分類は、今後日本酒の味を評価する手掛かりとなる可能性が ある。

次に、無機元素とアミノ酸の相関性を評価したところ、アラ ニン、グリシン、アスパラギン酸はリン、硫黄、マグネシウム との相関を確認することができた. 同様に蛍光指紋で得られた 蛍光情報との回帰分析を行ったところ、蛍光指紋では 350 nm, 400 nm, 525 nm 付近に蛍光が確認され、アスパラギン酸とア ラニンの相関係数は 0.9 以上であった. 蛍光指紋については主 成分分析を行ったところ、日本酒の精米歩合が小さくなるにつ いてプロットが右に移行する特徴が観られた. 各種分析装置の

結果の相関性を評価することにより、日本酒を評価し、味わい の相関関係を確認した. また、清水氏が開発した手法は他の食 品類にも適用可能であり、今後さまざまな食品の呈味評価に有 効であると考えられる.

なお,清水克敏氏は,液体クロマトグラフィー研究懇談会の 役員に2017年に就任し、現在は運営委員与力として、液体ク ロマトグラフィー研究懇談会の活動に積極的に参加している. 以上,清水克敏氏の研究活動と業績は,2026年液体クロマト グラフィー努力賞に相応しいと評価された.

なお、清水氏の業績に関する詳細は、LC 研究懇談会の電子 ジャーナル「LC と LC/MS の知恵」第11号 (2025年12月 15 日発行予定) に掲載し、受賞講演と表彰・副賞の授与は第 31回LC & LC/MS テクノプラザの初日 (2026年2月18日, 北とぴあ・ペガサスホール) に行う予定である. 2025年9月 20 日記.

〔LC 研究懇談会・委員長 中村 洋〕

執筆者のプロフィール

(とびら)

井倉 則之(IGURA Noriyuki)

九州大学大学院農学研究院(〒819-0395 福 举動.

E-mail: igura@agr.kyushu-u.ac.jp

(ミニファイル)

橋本 剛 (Наsнімото Takeshi)

上智大学理工学部 (〒102-8554 東京都千代 田区紀尾井町 7-1). 上智大学大学院理工学 研究科化学専攻. 博士 (理学). 《現在の研究 テーマ》超分子化学・金属錯体・電気化学を 用いた分子認識方法の開発. 《趣味》オーケ ストラでのクラシック演奏 (チェロ).

(トピックス)

佐藤 海 (SATO Kai)

上智大学大学院理工学研究科理工学専攻博士 岡県福岡市西区元岡 744). 九州大学大学院 後期課程(〒102-8554 東京都千代田区紀尾 農学研究院修士課程. 博士 (農学). 《現在の 井町 7-1). 上智大学大学院理工学研究科理 研究テーマ》エマルションの物性と香気放散 工学専攻博士前期課程修了. 修士 (理学). 《現在の研究テーマ》超分子複合体を用いた 電気化学センサーの開発. 《趣味》散歩、サ イクリング. 読書.

E-mail : k-sato-8u9@eagle.sophia.ac.jp

宇田 亮子 (UDA Ryoko)

奈良工業高等専門学校(〒639-1080 奈良県 大和郡山市矢田町 22). 大阪大学大学院工学 研究科物質生命工学専攻博士前期課程修了. 博士 (工学). 《現在の研究テーマ》トリフェ

ニルメタン誘導体と分子集合体または核酸と の相互作用. 《主な著書》 "Malachite Green: Properties and Uses", (Nova Science Publishers, New York), (2020), ISBN: 978-1-53617-800-5. 《趣味》旅行, 子供と家で行う科学実験. E-mail: rvoko@chem.nara-k.ac.ip

(リレーエッセイ)

安田 みどり(YASUDA Midori)

西九州大学健康栄養学部(〒842-8585 佐賀 県神埼市神埼町尾崎 4490-9). 佐賀大学大 学院工学系研究科化学専攻修士前期課程修 了. 博士 (理学). 《現在の研究テーマ》食品 の機能性や物性に関する研究. 《趣味》筋ト ν.

E-mail: midori@nisikvu-u.ac.ip

440 ぶんせき 2025 11