JEMIC.

|測技術セミナー (公社)日本分析化学会と共催 析化学における不確かさ研修プロ

楽しく! 簡単に! わかりやすく!

オンライン参加もOK!

受講者全員に目が届く 少数定員

講義と演習を 繰り返すので 確実に身に着く!

受講者全員に 受講証明書を発行

未経験者でも 簡単に不確かさの計算が できるようになる

複数の講師が対応

質問 しやすい!

受講者一人一人の 理解度を確認しながら 進めるので安心!

社員教育として 活用できる!

難しい数式や 偏微分は 使いません!

問い合わせ先

日本電気計器検定所

「知っておきたい不確かさの評価法 応用編」 「不確かさ評価に必要な統計的手法」 「事例で学ぶ不確かさ:電気編」 「事例で学ぶ不確かさ:温度編」 「ISO/IEC 17025:2017内部監査員研修」

「ISO/JIS Q 10012計測器管理規格の解説と活用」 「質量計の校正と不確かさ評価」 「一次元寸法測定器の校正と不確かさ評価」 「温度測定の基礎」「抵抗温度計の校正」 「熱電対の校正」 「放射温度計基礎講座」など 「熱電対の校正」

確認テストを行い

合格証明書を発行!

能力評価にも

利用できる!

日本電気計器検定所 (JEMIC) セミナー事務局

〒108-0023 東京都港区芝浦 4-15-7

TEL: 03-3451-1205 / E-Mail: kosyukai-tky@jemic.go.jp

セミナー詳細はこちら https://www.jemic.go.jp/gizyutu/j keisoku.html

標準器・計測器の校正試験については下記へお問い合わせください

https://www.jemic.go.jp/ (JEMIC Q

● JEMIC は、電気、磁気、温湿度、光、時間、長さ、質量、圧力、トルク、力の CSS校正を行っています。

● JEMIC が発行する国際MRA対応JCSS認定シンボル付き校正証明書は、品質システムの国際規格 ISO 9000S、自動車業界の国際的な品質マネジメントシステム規格IATF 16949の要求に対応できます。

JEMICのネットワーク・代表電話

●本社

〒108-0023 東京都港区芝浦4-15-7 Tel.03-3451-6760 Fax.03-3451-6910

校正試験実施・窓口

● 中部支社

〒487-0014 愛知県春日井市気噴町 3-5-7 Tel.0568-53-6336 Fax.0568-53-6337

〒531-0077 大阪市北区大淀北1-6-110 Tel.06-6451-2356 Fax.06-6451-2360

●九州支社

〒815-0032 福岡市南区塩原 2-1-40 Tel.092-541-3033 Fax.092-541-3036

●本社

03-3451-1181

●北海道支社

011-668-2437

●東北支社

022-786-5031

● 中部支社

0568-53-6331

●北陸支社

076-248-1257 ● 関西支社

06-6451-2355

● 関西支社京都事業所 075-681-1701

● 中国支社

082-503-1251

●四国支社

0877-33-4040

●九州支社

092-541-3031

● 沖縄支社

098-934-1491

お客さまのニーズに応えるネットワークと、 永年にわたる研究を基盤とする実績。 校正試験のことなら、 JEMICにご相談ください。

JEMICイメージキャラクター 「ミクちゃん」

Sustainability in Every Separation

近年、地球温暖化により世界中で様々な異常気象が発生し、各国政府は2050年までに温室効果ガスの排出を全体としてゼロにする「カーボンニュートラル」の達成を掲げています。業務効率化がより一層求められる一方で、分析業務のあるべき姿も大きく変わり始めています。脱炭素社会の実現に向けて、

Smart:多様な働き方によるやりがいと生産性の向上

Eco:環境負荷の低減

を両立するソリューションを提供します。

新しい一体型LCシステムi-Seriesは従来の卓越した性能を継承しながら、安定してご使用頂ける堅牢性と環境負荷低減に寄与する機能を備え、常に信頼性の高い分析結果を提供します。

intelligent

診断・予防・復旧の3機能が分析の堅牢性の維持をサポートし データ信頼性の向上と分析業務効率化の両方を実現

innovative

装置の遠隔操作・モニタリングによりラボ外からでも 分析業務を実施し、ラボ滞在時間を短縮

intuitive

直感的な操作とメンテナンス性、卓越した装置性能で 常に安定した分析を提供

Analytical Intelligenceは、島津製作所が提案する分析機器の新しい概念です。システムやソフトウェアが、熟練者と同じように操作を行い、状態・結果の良し悪しを自動で判断し、ユーザーへのフィードバックやトラブルの解決を行います。また、分析機器に対する知識や経験の差を補完し、データの信頼性を確保します。

詳しい製品情報はこちら

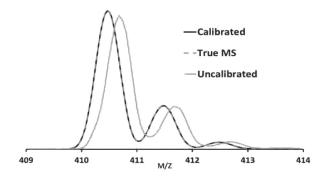
MassWorks Version 7.0

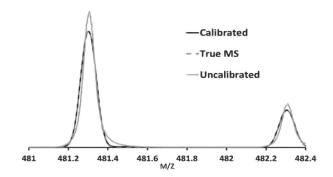
質量分析計の性能を限界まで引き出します

これまでのバージョンで築き上げられた実績をさらに進化させ、 MassWorks™ 7.0 は、取得後のデータ処理に特化した使いやす いソフトウェアパッケージとして登場しました。本製品は、Cerno社 が特許を取得している TrueCal™ 技術を採用し、ユニット質量分 解能の一般的な質量分析計においても、高い質量精度とスペクトル 精度を実現し、CLIPS™ フォーミュラサーチ機能により元素組成 の同定を可能にします。さらに、MassWorks の sCLIPS™ および BestScan™ sCLIPS 機能は、標準物質を使用することなく正確な ピーク形状補正を行うことで、高いスペクトル精度を提供します。

MassWorks は、強力な TrueCal キャリブレーション技術を搭 載しており、ユニット分解能システムにおいて質量精度を最大100 倍向上させることができます。さらに、高分解能およびユニット分 解能の両方のシステムで、最大99.9%のスペクトル精度 (Spectral Accuracy) を実現します。この高速かつ柔軟なMSアプリケーショ ンソフトウェアパッケージは、質量精度とスペクトル精度を組み合 わせることで、あらゆる種類のMSデータ(高分解能・低分解能の両 方) に対し、Cernoの解析手法によって大幅な改善をもたらします。

CLIPS検索により、ユニット分解能のGC及びLC/MS機器 で正確な質量式検索が可能になります。


CLIPS (Calibrated Line-shape Isotope Profile Search) は、 比類のない質量精度と最高のスペクトル精度を組み合わせて、四重 極 MS を最大限に活用します。


- 質量精度が 0.x Da から 0.00x Da まで 100 倍向上
- クロマトグラフィー時間スケールで 99% を超えるスペクトル精度
- 低分解能の装置でも正確な 化学式ID が可能
- 未分離 MS 信号の強力な混合分析

高分解能MSのsCLIPS検索では、較正化合物を必要とせ ず、化学式IDのスペクトル精度を大幅に向上させます。

sCLIPS (自己較正線形同位体プロファイル検索)を使用すると、高解 像度の TOF、Orbitrap、または FT-ICR を最大限に活用できます。

- 独自の特許取得済みセルフキャリブレーションプロセス
- 数学的に正確な同位体モデリング
- 適切に設計および運用されたシステムで達成可能な 99% 以上 のスペクトル精度
- 化学式ID の質量精度を超える
- 最大 95~99% の誤った式を排除可能
- 未解決の MS 信号による強力な混合物分析

New for MassWorks Version 7

MassWorks バージョン 7 は、処理速度が向上し、安定性も高まった 64 ビット Windows アプリケー ションとして新たに登場しました。更新されたファイルリーダーにより、MassWorks はほとんどの主要べ ンダーのデータを直接読み込むことが可能になり、さらに業界標準の NetCDF 交換形式にも対応しまし た。また、多くの新機能の一つとして、「MassLab™」アプリが追加されました。これらのカスタムアプリ は Python または Matlab により作成でき、たとえば高分子特性評価用の新しい機能「SAMMI™」を MassWorks に追加することができます。SAMMI™ は、従来の四重極アルゴリズムに比べて最大 30 倍 の高精度を実現し、高分解能機器に匹敵する精度を提供します。

cerno

株式会社 エス・ティ・ジャパン

URL: https://www.stjapan.co.jp

東京本社/

大阪支店/

〒103-0014 東京都中央区日本橋蛎殻町1-14-10 〒540-6127 大阪府大阪市中央区城見2-1-61 ツイン21 MIDタワー TEL: 03-3666-2561 FAX: 03-3666-2658 TEL: 06-6949-8444 FAX: 06-6449-8445

標準物質の取り扱い専門商社

~各種標準物質 取り扱っております~

各種標準物質(RM, CRM)

PFAS関連(EPA 1633対応など)、RoHS(MCCPs、TBBPA)、REACH規則(PAHs)など取り扱っております。 核燃料関連(ウラン、トリウム、プルトニウム)、環境中放射能標準物質などもございます。

ICP-OES/ICP-MS AAS/IC

- ・無機標準液/オイル標準液
- ・鉄・非鉄各種金属
- 工業製品 (石炭、セメント、セラミックス等)
- 環境物質
- (土壌、水、堆積物、岩石等)
- 乳製品、魚肉、穀物等

固体発光分光分析 蛍光X線/ガス分析

- 鉄・非鉄各種金属
- 工業製品 (石炭、セメント、セラミックス等)
- 環境物質 (土壌、水、堆積物、岩石等)
- (乳製品、魚肉、穀物等)

物理特性/熱特性

- X線回折装置用 Si powder, Si nitride,等
- ・粒度分布計用
- 熱分析用 DSC(In.Pb.等)
- ・粘度測定用
- 膜厚分析用

有機標準物質

- 製薬標準物質 SPEX,LGC,EP,USP, TRC,MOLCAN
- 認証有機煙進液
- ・ダイオキシン類/PCB
- ・有機元素計用標準物質
- Cayman Chemical

Cole-Parmer 社 (旧 SPEX 社) 前処理機 (フリーザーミル・ボールミル)

凍結粉砕機 (Freezer/Mill)

粉砕容器にインパクター(粉砕棒)とサンプルを一緒に入れ、液体窒素にてサンプルを 常時凍結させて運転を開始します。

インパクターを磁化させ、往復運動させる事による衝撃でサンプルを粉砕します。 やわらかいサンプルや熱に弱い生体サンプルに最適です。

〈サンプル例〉プラスチック、ゴム、生体サンプルなど、 〈使用例〉ICP, XRF, GC, LCの前処理 DNA/RNAの抽出の前処理

ボールミル (Mixer/Mill)

SPEX独自の8の字運動により、効率的な粉砕、混合が可能。

サンプルに合った粉砕容器、ボールを選択可能。

〈サンプル例〉岩石、植物、錠剤、合金など

〈使用例〉ICP、XRFの前処理 メカニカルアロイイング

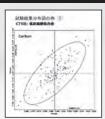
不純物証明&目盛つき容器 50mL Environmental Express社

Environmental Express社製ポリプロピレンチューブの特長

CertiTube

- ・不純物濃度証明書と公差証明書が付属
- ⇒メスアップや保存容器として使用でき容器の移し替えをする作業(手間、時間)を削減できます。
- ・ガラス器具由来の金属コンタミリスクも軽減できます! 110℃の耐熱性があり分解容器としても使用できます。
- ※130℃以上の温度では使用できません。
- ・容器本体とキャップの材質が同じ商品です。
- · Certi Tubeはディスポーサブルで使用可能な価格設定です。

・超高純度UltiTubeは、68元素ppbおよびpptの低濃度が保証され、より低ブランクの測定を実現します。


海外技能試験輸入代行サ

技能試験(外部精度管理)とは・・・

技能試験提供機関が提供する未知サンプルを分析することによって、分析者の分析技能を測るテストです。 分析能力に関して中立的な評価が得られ、国内外の参加試験所と分析能力の比較が出来ます。

〈メーカー/サンプル例〉

- ・LGC(ドイツ):環境・食品・飲料・アルコール・微生物・化粧品・製薬・オイル・飼料
- ・CTS(アメリカ):鉄鋼・非鉄・樹脂
- ·iis(オランダ):ポリマー(化学試験)・繊維・化粧品 ·NSI(アメリカ):飲料水・環境・食品・微生物・製薬
- ・NIL (中国): ポリマー (化学試験・物性試験) 鉄鋼原料 ·PTP(フランス): 非鉄関連·航空宇宙関連試験
- TESTVERITAS (フランス):食品・食肉・野菜

YouTubeチャンネル【西進商事公式】

弊社取り扱い製品の情報を公開中です。(順次アップロード予定)

標準物質専門商社

西進商事株式会社

https://www.seishin-syoji.co.jp/

社 〒650-0047 神 戸 市 中 央 区 港 島 南 町 1 丁 目 4 番 地 4 号

TEL.(078)303-3810 FAX.(078)303-3822

東 京 支 店 〒105-0012 東京都港区芝大門2丁目12番地7号(RBM芝パークビル)

TEL (03) 3459-7491 FAX (03) 3459-7499

名古屋営業所 〒450-0002 名古屋市中村区名駅4丁目2番25号(名古屋ビルディング桜館4階)

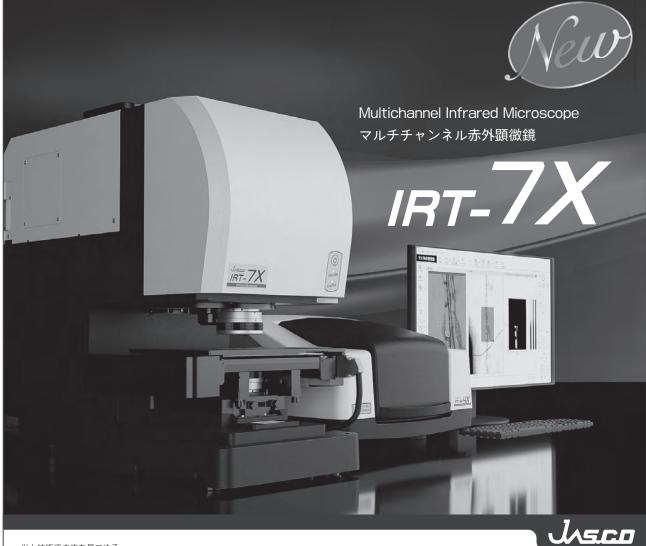
TEL (052) 586-4741 FAX (052) 586-4796

北海道営業所 〒060-0002 札幌市中央区北二条西1丁目10番地(ピア2・1ビル)

TEL.(011)221-2171 FAX.(011)221-2010

Explore with Confidence

マルチチャンネル赤外顕微鏡 IRT-7X は、圧倒的な観察画質の向上と高速化されたリニアアレイ検出器の高次元デジタル処理により、より高速で高精細な赤外イメージングを実現しました。異物解析や材料研究における " 観る・ 測る・解析する"を次の次元へ導きます。


Fast IR Imaging - 高精度なケミカルイメージを高速に -

High Quality Observation - 高品質の観察画像 -

Automation & Usability - 自動化と使いやすさの追求 -

Unique Technique - 日本分光独自のソリューション -

Various Analysis - 多様な解析ツール -

光と技術で未来を見つめる

日本分光株式会社

〒192-8537 東京都八王子市石川町2967-5 TEL 042(646)4111 他 FAX 042(646)4120 日本分光の最新情報はこちらから

https://www.jasco.co.jp

FRONTIER LAB

高分子材料分析の強力な戦力! マルチショット・パイロライザー

EGA/PY-3030D

未知試料へ多面的にアプローチ

発生ガス分析や瞬間熱分析などの組み合わせにより 未知試料を多面的に熱分解GC/MS分析

前処理なしで迅速に分析

あらゆる形態のポリマー試料を煩雑な前処理なしで 簡単・迅速に分析

高性能で高信頼

サーモグラムとパイログラムの高い再現性を保証

豊富な周辺装置

目的に合わせて選べる周辺装置で分析業務をサポート

微量ポリマーの検出感度が大幅向上! スプリットレス熱分解用オプション装置 MFS-2015E

キャピラリーGC分析における中・高沸点領域の ピーク形状を大幅改善!

スマートプレカラム

NEW

試料水中のマイクロプラスチックを簡単に捕集! 捕集から測定までスムーズな操作を実現 Smart 微粒子コレクター

NEW

迅速凍結粉砕装置 IQ MILL-2070

簡単操作!扱いやすい卓上型の粉砕装置

静かな作動音 ··· 周辺での会話が可能(粉砕時の騒音参考値 55 dB)

短時間 & パワフルに粉砕 … 高速上下ねじれ運動による効率的な粉砕

試料に合わせた細かな条件設定 … 粉砕速度/時間/サイクル数の設定 種類豊富な粉砕子と容器

液体窒素消費量が少なく省エネ ··· 液体窒素の最小消費量は約300 mL

DNA抽出用に細胞破砕を効率化する専用モデルもございます

フロンティア・ラボ 株式会社

www.frontier-lab.com/jp info@frontier-lab.com

ポリマー分析用試料キット

ポリマーサンプルキット205

<1セット 100本入・10-20g/1本>

100本の構成ポリマーは汎用性ポリマー試料だけでなくエンプラ試料も含まれておりますのでIR分析等のライブラリーへの収録にご利用いただけるポリマー分析試料キットです。

スペックとして:引火点・平均重量分子量・屈折率・ガラス転移点・融解 温度等の情報がございます。

100種類の試料の一部試料については入れ替えも可能です。

詳しくはお問い合わせ下さい。

Cap No.	Cat No.	Polymer	Cap No.	Cat No.	Polymer
	053	Acrylonitrile/butadiene copolymer - 22% acrylonitrile	51	107	Polyethylene, chlorosulfonated
2	054	Acrylonitrile/butadiene copolymer - 22% acrylonitrile	52	042	Polyethylene, low density
3	530	Acrylonitrile/butadiene copolymer - 51% acrylonitrile	53	405	Polyethylene, oxidized
ļ	209	Butyl methacrylate/isobutyl methacrylate copolymer	54	491	Poly(ethylene glycol)
5	660	Cellulose	55	136A	Poly(ethylene oxide) - Approx Mw 100,000
3	083	Cellulose acetate	56	136E	Poly(ethylene oxide) - Approx Mw 400,000
7	077	Cellulose acetate butyrate	57	113	Poly(ethyl methacrylate)
3	321	Cellulose propionate	58	414	Poly(2-hydroxyethyl methacrylate) - Approx Mw 300,000
9	1078	Cellulose triacetate	59	815	Poly(2-hydroxyethyl methacrylate) - Approx Mw 1,000,000
10	459	Ethyl cellulose - Viscosity 4cp (5% solution @ 25°C)	60	112	Poly(isobutyl methacrylate)
11	464	Ethyl cellulose - Viscosity 22cp (5% solution @ 25°C)	61	106	Polyisoprene, chlorinated
12	460	Ethyl cellulose - Viscosity 300cp (5% solution @ 25°C)	62	037B	Poly(methyl methacrylate) - Approx Mw 75,000
13	534	Ethylene/acrylic acid copolymer - 15% acrylic acid	63	037D	Poly(methyl methacrylate) - Approx Mw 540,000
14	455	Ethylene/ethyl acrylate copolymer - 18% ethyl acrylate	64	382	Poly(4-methyl-1-pentene)
15	939	Ethylene/methacrylic acid copolymer - 12% methacrylic acid	65	391	Poly(p-phenylene ether-sulphone)
6	243	Ethylene/vinyl acetate copolymer - 14% vinyl acetate	66	090	Poly(phenylene sulfide)
17	244	Ethylene/vinyl acetate copolymer - 18% vinyl acetate	67	130	Polypropylene, isotactic
8	316	Ethylene/vinyl acetate copolymer - 28% vinyl acetate	68	1024	Polystyrene, Mw 1,200
19	246	Ethylene/vinyl acetate copolymer - 33% vinyl acetate	69	039A	Polystyrene - Approx Mw 260,000
20	326	Ethylene/vinyl acetate copolymer - 40% vinyl acetate Ethylene/vinyl acetate copolymer - 40% vinyl acetate	70	574	Polystyrene sulfonate, sodium salt
21	784	Ethylene/vinyl acetate copolymer - 45% vinyl acetate Ethylene/vinyl acetate copolymer - 45% vinyl acetate	71	046	Polysulfone
22	959	Ethylene/vinyl alcohol copolymer - 38% ethylene	72	203	Poly(tetrafluorobutylene)
23	143	Hydroxyethyl cellulose	73	166	Poly(2,4,6-tribromostyrene)
24	401	Hydroxypropyl cellulose	73 74	347	Poly(vinyl acetate) - Approx Mw 150,000
25	423	Hydroxypropyl methyl cellulose - 10% hydroxypropyl,	7 4 75	1040	Poly(vinyl acetate) - Approx Mw 500,000
23	423		75 76		* * * * * * * * * * * * * * * * * * * *
26	144	30% methoxyl Methyl cellulose	76 77	336 352	Poly(vinyl alcohol), 88% hydrolyzed Poly(vinyl alcohol), 98% hydrolyzed
27	374	Methyl vinyl ether/maleic acid copolymer - 50/50 copolymer	78	361	Poly(vinyl alcohol), 99% hydrolyzed
28	317	Methyl vinyl ether/maleic acid copolymer - 50/50 copolymer Methyl vinyl ether/maleic anhydride - 50/50 copolymer	76 79	043	Poly(vinyl accord), 99 % Hydroryzed Poly(vinyl butyral)
20 29	034	Nylon 6 Poly(caprolactam)	80	038	Poly(vinyl chloride)
30	033		81	353	Poly(vinyl chloride), carboxylated - 1.8% carboxyl
	313	Nylon 6/6 Poly(hexamethylene adipamide)	82	102	
31		Nylon 6/12 Poly(hexamethylene dodecanediamide)			Poly(vinylidene fluoride)
32	006	Nylon 11 Poly(undecanoamide)	83	840	Poly(4-vinylpyridine), linear
33	044	Nylon 12 [Poly(lauryllactam)]	84	416	Poly(4-vinylpyridine-co-styrene)
34	045A	Phenoxy resin	85	132	Polyvinylpyrrolidone - Approx Mw 360,000
35	009	Polyacetal	86	494	Styrene/acrylonitrile copolymer - 25% acrylonitrile
36	001	Polyacrylamide Polyacrylamide	87	495	Styrene/acrylonitrile copolymer - 32% acrylonitrile
37	1036	Polyacrylamide, carboxyl modified, high carboxyl content	88	393	Styrene/allyl alcohol copolymer
38	026	Poly(acrylic acid) - Approx Mw 450,000	89	057	Styrene/butadiene copolymer, ABA block
39	599	Poly(acrylic acid) - Approx Mw 4,000,000	90	595	Styrene/butyl methacrylate copolymer
10	134	Polyacrylonitrile	91	453	Styrene/ethylene-butylene copolymer, ABA block
11	385	Polyamide resin	92	1067	Styrene/isoprene copolymer, ABA block
12	128	Poly(1-butene), isotactic	93	457	Styrene/maleic anhydride copolymer
13	962	Poly(butylene terephthalate)	94	049	Styrene/maleic anhydride copolymer - 50/50 copolymer
14	111	Poly(n-butyl methacrylate)	95	068	Vinyl chloride/vinyl acetate copolymer - 10% vinyl acetate
15	1029	Polycaprolactone	96	063	Vinyl chloride/vinyl acetate copolymer - 12% vinyl acetate
16	954	Polycarbonate - Approx Mw 36,000	97	911	Vinyl chloride/vinyl acetate/hydroxypropyl acrylate -
17	035	Polycarbonate - Approx Mw 45,000			80% vinyl chloride,5% vinyl acetate
18	126	Poly(2,6-dimethyl-p-phenylene oxide)	98	058	Vinylidene chloride/vinyl chloride copolymer -
19	324	Poly(4,4'-dipropoxy-2,2'-diphenyl propane fumarate)			5% vinylidene chloride
50	558	Polyethylene	99	369	n-Vinylpyrrolidone/vinyl acetate copolymer - 60/40 copoly
			100	021	Zein, purified

・ここに記されている他にも数千種類のポリマー試料を取り揃えております。 カタログ・資料ご希望およびお問い合わせ等は下記へご連絡下さい。

〒170-0005 東京都豊島区南大塚3丁目11番地8号 TEL.03-5927-8356 (代) FAX.03-5927-8357 ホームページアドレス http://www.shibayama.co.jp e-mail アドレス gsc@shibayama.co.jp

YASUI KIKAI

SINCE1953

再現性、精度、信頼性。 36年以上の実績と公定法と学術論文。

立体8の字® 秒速粉砕機

マルチビーズショッカー®

Multi-beads Shocker®

MB3000シリーズ

● 卓上型・省スペース ※ 極静音設計 40dB以下

製造発売元 ▼ 安井器械株式会社 本社・工場 〒534-0027 大阪市都島区中野町2-2-8

TEL.06-4801-4831

FAX.06-6353-0217 https://www.yasuikikai.co.jp

E-mail:s@yasuikikai.co.jp

©2025 Yasui Kikai Corporation, all rights reserved.

251007

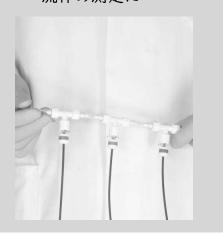
BAS

光学式酸素モニター

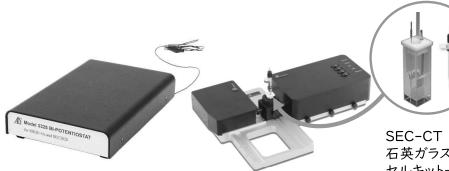
FireSting O2-C 酸素モニター(4ch)

接続するセンサータイプを入れ替えることで、 基本機能の光学式酸素モニタリング測定の他に 光学式温度測定、および (一部機種のみ) pH測定が可能な測定装置です。

- 一台で最大4チャンネル対応。項目の組合せは自由
- 気相および液相での測定に利用できます
- 酸素濃度測定用のセンサーには 通常用と低濃度用があります
- 非接触型など様々なタイプのセンサーをラインナップ


ミニプローブを 溶液に挿して・・・

密閉容器内の酸素濃度や 温度の測定に・・・


フローセルタイプで 流体の測定に・・・

BAS

分光電気化学システム

モデル3325 バイポテンショスタット

SEC2020 スペクトロメーターシステム 電気化学的な挙動と 分光スペクトル変化を 同時に測定できる システムです。

SEC-CT 石英ガラス製光電気化学 セルキット+参照電極

● 製品の外観、仕様は改良のため予告なく変更される場合があります。

BAS ビー・エー・エス株式会社

光学式センサーをはじめ各種のアクセサリーについては 弊社ホームページでご確認下さい!!

本社 〒131-0033 東京都墨田区向島 1-28-12 東京営業所 TEL: 03-3624-0331 FAX: 03-3624-3387 大阪営業所 TEL: 06-6308-1867 FAX: 06-6308-6890

セミナー講演内容などビー・エー・エス株式会社の最新情報はメールニュースで随時配信しております。配信ご希望の方はお気軽にお問合せ下さい \Rightarrow E-mail: sp2@bas.co.jp

Create The Next Polymer Analysis

JAIの熱分解装置、全9種類。用途に合わせてお選びください。

全機種で試料管とニードルの交換が容易。コンタミのお悩み解消!!

Curie Point Injector JCI-77 for GC, GC/MS

据え付けいらず、 GC/MSを選ばない。

熱分解-GC/MS、 VOC分析で活躍!!

JHP-10 JHP-10+APS-50 JPI-15/07 JHP-2200 NEW!! IHI-08 JHI-08+APC-50 JHI-08+APS-50

キューリーポイントPY

注入します。

+パイロホイルサンプラー

GCのインジェクターへ挿入して

キューリーポイントインジェクター オートサンプラー

熱分解・ 発生ガス分析装置

キューリーポイントPY +抵抗加熱PY

30-IHL +カップサンプラー

+パイロホイルサンプラー

実機でのデモンストレーションさせていただきます。お持ちのGC/GCMSでご評価ください。 デモのご希望は下記までお願いします。なるべく早く対応させていただきます。

| 株式会社 https://www.jai.co.jp/

■本社 · 工場 ■大阪営業所

■名古屋営業所

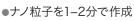
〒190-1213 東京都西多摩郡瑞穂町武蔵 208 TEL 042-557-2331

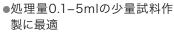
〒532-0002 大阪市淀川区東三国 5-13-8-303 TEL 06-6393-8511 〒451-0045 名古屋市西区名駅 2-23-14 VIA141-321 TEL 052-446-6696

製品情報

Industry Co., Ltd.

ぶんせき 11 月号 掲載会社 索引


【ア行】	【ナ行】	【ヤ行】
(株)アメナテック・・・・・・・A8	日本電気計器検定所・・・・・・・表紙 4	安井器械(株)······A4
(株)エス・ティ・ジャパン・・・・・・ 表紙 2	日本分光㈱・・・・・・A1	
【サ行】	日本分析工業㈱・・・・・・A10	製品紹介ガイド ················· A6~7
(株島津製作所・・・・・・・・・・ 表紙3	【八行】	
西進商事㈱・・・・・・・ カレンダー裏	ビー・エー・エス(株)・・・・・・ A9	
(株)ゼネラルサイエンス	フリッチュ・ジャパン(株)・・・・・・ A5	
コーポレーション・・・・・・ A3	フロンティア・ラボ(株)・・・・・・・ A2	


分析試料の前処理作成用粉砕機

FRITSCH GERMANY

FRITSCH

ドイツ フリッチュ社製 ミニミル P-23

- ●重量7kg、寸法20×30×30cm と極めて小型
- ●容器。ボールの材質はジルコニ ア、ステンレス、プラスチック
- ●研究室だけでなく、DCを使って 外部での使用も
- 更に、グローブボックス内での 使用も可能
- ●マイクロチューブにも対応。 Max 2ml×6個

ドイツ フリッチュ社製

遊星型ボールミル Classic Line P-7

- ●Fritsch 伝統の遊星型ボール ミルの小型タイプ
- ●容器のサイズは45ml、または 12ml。2個搭載可能
- ●容器、ボールの材質はメノー、 ジルコニア等7種類
- ポット回転数はMax1,600 rpmの強力パワー
- ●試料作製だけでなく、本機目 的の研究開発用機器としても ご使用いただけます

カタログおよび価格表は弊社にお問い合わせください

フリッチュ・ジャパン株式会社

社 〒231-0023 横浜市中区山下町252 大阪営業所 〒532-0011 大阪市淀川区西中島7-2-7 福岡営業所 〒819-0022 福岡市西区福重5-4-2

info@fritsch.co.jp https://www.fritsch.co.jp

Tel (045)641-8550 Fax (045)641-8364 Tel (06)6390-0520 Fax (06)6390-0521 Tel (092)707-6131 Fax (092)707-6131

高周波溶融装置

ビード&フューズサンプラ

高周波誘導加熱を利用した、蛍光 X 線分析用ガラスビードの作成や ICP/AA 分析のアルカリ融解を行う試料前処理装置

オートサンプラ機能付タイプ AT-5300

【高周波誘導加熱】

電気炉とは違い、るつぼ自体が発熱するので加熱効率が良く、短時間で溶融処理ができます。また、コイルに流れる電流値を精度良くコントロールすることで、るつぼの発熱温度を微調整することができるので、試料と融剤が激しく反応して試料が飛散することを抑えることができます。

【主な特徴】

- ・8 種類の溶融レシピを自由に設定 加熱温度・加熱時間・るつぼの揺動回転
- ・色々な材質のるつぼの使用が可能白金・ジルコニウム・ニッケル特殊アダプタをセットするとアルミナるつばも使用可

卓上型タイプ AT-5000

株式会社アメナテック

〒224-0003

神奈川県横浜市都筑区中川中央 2-5-13 メルヴューサガノ 401

TEL: 045-548-6049 e-mail: info@amena.co.jp https://www.amena.co.jp

新規会員募集中!!

日本分析化学会は、研究者・技術者が一体となって組織化 された分析化学分野では世界最大級の学会です。

今後ますますハイテク化していく生活・産業活動を支えるため、 本学会ではその技術力の進歩・発展に活発に貢献しております。 この度、さらに幅広く事業を拡大していくため広く会員拡充を 図ることになりました。

この好機に多数特典のある本会会員への入会をお知り合いにぜひお勧め下さい。

公益社団法人 日本分析化学会 会員係

〒141-0031 東京都品川区西五反田1-26-2 五反田サンハイツ304号

TEL: 03-3490-3351 FAX:03-3490-3572

E-MAIL: memb@jsac.or.jp

がん選択的ホウ素中性子捕捉療法を企図した多重標的型ポリロタキサン

東 大志,荒瀬春輝,伊敷帆夏,本山敬一

1 背 景

1・1 がん中性子捕捉療法

近年、光や超音波、中性子線などの物理エネルギーを 患部に照射することで標的部位でのみ薬剤を活性化させるがんの治療法が注目されている。とりわけ中性子捕捉療法(BNCT)は、ホウ素(10 B)と熱中性子との核反応で生じる高 LET(linear energy transfer)放射線の α 粒子(ヘリウムイオン: 4 He)およびリチウム原子核(7 Li)を用いてがん細胞のみを破壊する放射線治療であり、多くの利点を有している。例えば、既存の放射線治療では約 30 回(6 週間)程度の照射が必要となるが、BNCTでは多くの場合 1 回(1 日)の照射で治療が終了する。また、中性子線照射により生じる原子核の飛程距離はいずれも $4\sim9\,\mu\mathrm{m}$ であり、細胞 1 個分のサイズと同程度であることから、正常組織への影響は少ないと言われている。

1・2 ホウ素薬剤

BNCT は、ホウ素を含有する化合物(ホウ素薬剤)を 投与後、がんに集積したホウ素薬剤に中性子線を照射す ることで実施される. そのため、ホウ素薬剤をがん選択 的に集積させることが重要となる. 現在 BNCT に用い られるホウ素薬剤は、メルカプトウンデカヒドロドデカ ボレート (BSH) およびボロノフェニルアラニン (BPA) の2種類があるが、がん細胞選択性の高さから BPA が 汎用されている。BPAは、フェニルアラニン構造を有 するフェニルボロン酸であり、 がん細胞において過剰発 現しているアミノ酸トランスポーター(LAT1)を介し てがん細胞選択的に取り込まれる. LAT1 は、血液脳関 門や胎盤関門などでわずかに発現がみられるものの、正 常組織での発現量が低いことから、がん細胞を標的とし たアクティブターゲティングが可能となる. しかしなが ら、BPA はアンチポートメカニズムによってがん組織 から速やかに排泄されることから、腫瘍中濃度を保つた めに高用量による連続投与が必要となっている.

BPA のがん集積性や滞留性を改善する方法として、 近年 Nomoto らは、BPA とポリビニルアルコール(PVA) を可逆的に結合させ、BPA を高分子量化することでト ランスポーターではなく、エンドサイトーシスを介して 細胞内に取り込ませる知見を報告した¹⁾. これにより、アンチポートを回避し、BPA のがん細胞内における滞留性が向上することで、治療効果が劇的に向上した。また、Maruyama らは、ホウ素薬剤をリポソームに封入することで腫瘍内における滞留性を向上させ、静脈内投与後、がん組織中 BPA 濃度を高く維持することに成功した²⁾. このように、BNCT において、細胞内取り込み経路およびがん組織・がん細胞における滞留性を制御可能な薬物送達システム(DDS)を開発することは極めて重要といえる.

1・3 フェニルボロン酸

薬物やキャリアにがん移行性リガンドを修飾すると. がんへの選択性や集積性が向上することから, アクティ ブターゲティング素子として様々なリガンドが多用され ている. がん移行性リガンドの例として、抗体、ペプチ ド、糖、葉酸、フェニルボロン酸(PBA)などが知られ ている. なかでも、PBA は、1) 腫瘍マーカーであるシ アル酸 (SA) と結合する, 2) 分子量が 184 Da と比較 的小さくキャリアの物性に影響を与えにくい、3) 安価 である、などの利点からリガンド分子として注目されて いる. 例えば Tang らは、ナノ粒子に PBA を修飾する ことで、がん移行性が向上することを報告した3). また Deshayes らは、高分子ミセルに PBA を修飾したナノ キャリアが、静脈内投与後、PBA 非修飾群よりもがん 細胞における取り込みや治療効果に優れることを報告し ている4). 特筆すべきこととして、PBA は分子内にホウ 素を含むため、それ自体がホウ素薬剤として有用である 可能性があり、BNCT において、がん移行性リガンドと ホウ素薬剤の二刀流として機能することが期待できる.

1・3 ポリロタキサン

PBAをがん移行性リガンドとして用いる場合、単体で使用すると、がん細胞表面のSAと1点のみで相互作用(単価相互作用)するため、がん移行性が制限される。これに対して、複数のPBAを薬物キャリアに修飾すると、細胞表面の複数のSAと多点で相互作用(多価相互作用)できるため、がん細胞への親和性が向上する。しかし、がん細胞表面のSAの分布とPBA間で空間的なミスマッチが生じるため、がん細胞への親和性に

ぶんせき 2025 11 373

は限界がある.

ポリロタキサン (PRX) と呼ばれる超分子化合物にリ ガンドを修飾すると、リガンドが可動となる結果、標的 細胞表面の受容体の分布を認知して空間的ミスマッチを 回避しながら多価相互作用可能なことが知られてい る⁵⁾. 筆者らも最近, PRX にがん移行性リガンドである 葉酸を修飾すると、がん細胞表面の葉酸受容体の分布に 応じて空間的ミスマッチを回避しながら多価相互作用可 能なことを明らかにした⁶⁾. ここで PRX とは、複数の 環状分子の空洞に直鎖状の軸分子を貫通させ、その両端 を嵩高い官能基でキャップした超分子化合物であり、環 状分子にはシクロデキストリン (CyD), 軸分子はポリ エチレングリコール (PEG) が多用される. PRX 中の CyD は PEG 鎖に沿ってスライド・回転できるため、 PRX 中の CyD にリガンド修飾を施すと、リガンドが可 動となる. 上述の葉酸修飾 PRX を薬物キャリアに修飾 すると, 可動性の葉酸を付与することができるため, が ん細胞への親和性やがん移行性を向上させることができ

上記背景の下、PRX に PBA を修飾すると、PBA が可動となる結果、がん細胞表面の SA の分布を認知して空間的ミスマッチを回避可能な、がん移行性ホウ素薬剤の開発が期待できる(図 1)。そこで本稿では、筆者らが最近開発したがん移行性超分子ホウ素薬剤について概説する⁷⁾。

2 結果と考察

2・1 フェニルボロン酸修飾ポリロタキサンの調製

はじめに、PBA 修飾 PRX を調製した.ここで、PBA 誘導体の一種である 4-カルボキシ-3-フルオロフェニルボロン酸(FPBA)は分子内にフッ素を有し、pKa が 7.5 と生理条件に近く、SA と結合しやすいことから、PRX に修飾する PBA として FPBA を選択した.まず、 α -CyD と両末端をアミノ化した PEG を水中で混合し、複数の α -CyD が PEG 鎖を包接したポリ擬ロタキサンを調製した.次に、ポリ擬ロタキサンの両端にアダマンタン酢酸を縮合させ、PRX を得た.PRX の溶解性を向上させるため、PRX に Propylene oxide を反応させ、ヒド

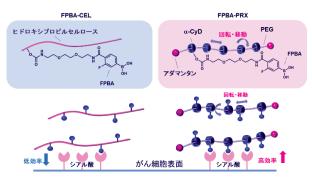


図 1 FPBA-CEL と FPBA-PRX のがん細胞認識機構

ロキシプロピル化 PRX(HP-PRX)を得た。HP-PRX に 1,2-Bis(2-aminoethoxy)ethane を反応させアミノ化 した後、縮合剤でカルボキシ基を活性化させた FPBA を反応させ、FPBA 修飾 PRX(FPBA-PRX)を得た.なお、FPBA の可動性が低いコントロールとして、ヒドロキシプロピルセルロースに FPBA を修飾した FPBA-CEL も調製した(図 1).

2.2 物理化学的性質

一般に、製剤の粒子径が 100 nm 以下で電荷的に中性であると、Enhanced permeation and retention effect (EPR 効果)によってがんに集積しやすいと言われている。そこで次に、FPBA-PRX および FPBA-CEL の粒子径 および ζ -電位を測定した。FPBA-PRX および fPBA-CEL の粒子径はそれぞれ、約 15 nm および約 12 nm であった。また、両者の ζ -電位は、いずれも中性付近であることが示唆された。これらの結果から、FPBA-PRX および FPBA-CEL は、SA を標的としたアクティブターゲティングのみならず、EPR 効果を利用したパッシブターゲティングも期待できる物性である可能性が示唆された。

PBA はボロン酸を介して糖の1,2-および1,3-ジオールと可逆的に結合することが知られており、SA と相互作用することが報告されている。そこで次に、FPBA-PRX が SA と相互作用可能か検討するために、アリザリンレッド S (ARS) を用いて評価した。ARS は、フェニルボロン酸と特異的に結合することで蛍光を発する。実際、ARS に FPBA-PRX を添加することで強い蛍光が認められた。一方、競合阻害剤として SA を添加したところ、SA の添加濃度依存的に ARS 由来の蛍光強度が減少した。これらのことから、FPBA-PRX は SA と相互作用することが示唆された。

2・3 細胞内取り込み

SAは、細胞表面の糖鎖の非還元末端に存在し、正常細胞と比較してがん細胞に高発現していることが知られている。その発現量はがん種によって異なるものの、一般にがん細胞 1 個につき、約 10⁷~10⁹ 個といわれている。前項において、FPBA-PRX は SA と相互作用することが示唆されたため、SA を介してがん細胞選択的に取込まれることが期待できる。そこで次に、蛍光物質である Tetramethylrhodamine(TRITC)を ラベル化したTRITC-FPBA-PRX およびTRITC-FPBA-CEL を調製し、各種がん細胞および正常細胞に対する細胞内取込みをフローサイトメトリーにより検討した。また、FPBA を修飾していない PRX(HP-PRX)にTRITC ラベル化したTRITC-HP-PRX も調製し、比較対照とした。

FPBA を修飾していない TRITC-HP-PRX は SA 高発現 細胞である HeLa 細胞内にほとんど取り込まれず、リガ

ンドが低可動性である TRITC-FPBA-CEL は一定の細胞内取り込みを示した. 一方、TRITC-FPBA-PRX はTRITC-FPBA-CELよりも効率よく、かつ濃度依存的に取り込まれることが示唆された. また、同じく SA 高発現細胞である Colon-26 細胞においても TRITC-FPBA-PRX は、TRITC-HP-PRX および TRITC-FPBA-CELと比較して効率よく細胞内に取り込まれることが示唆された. これらの結果は、PRX に修飾した FPBA の動的特性が高効率な細胞内取り込みに重要であることを示唆する.

一方、SA の発現が低いとされるヒト正常腎細胞(HK2 細胞)に対する FPBA-PRX の細胞内取込みを評価したところ、TRITC-FPBA-PRX は HK2 細胞にほとんど取り込まれず、HP-PRX とほぼ同程度の取込み量であることが示唆された。これらの結果より、TRITC-FPBA-PRXは、SA を高発現するがん細胞選択的に取り込まれることが示唆された。

2.4 体内動態

FPBA-PRX の が ん 集 積 性 を 明 ら か に す る た め, Colon-26 細胞を移植した担がんマウスの尾静脈内に TRITC-FPBA-PRX または TRITC-FPBA-CEL を 単回投与後, 腫瘍を 回収し TRITC の 蛍光 強度を 測定した. TRITC-FPBA-PRX は, 投与 360 分後に投与量の約 15 % が 腫瘍に集積し, 最大値を示した. さらに TRITC-FPBA-PRX は, TRITC-FPBA-CEL と比較して高い腫瘍集積率を示した. FPBA-CEL も高分子で EPR 効果を示すことが予想され, さらに SA と多価相互作用できるが, FPBA-PRX が FPBA-CEL よりも高効率に腫瘍に集積したことは特筆すべき結果である.

次に、各種臟器への分布を確認したところ、TRITC-FPBA-PRX は静脈内投与 3 時間後には腫瘍に最も集積し、少なくとも投与 6 時間後までは他の臓器よりも腫瘍に集積することが示唆された。一方、TRITC-FPBA-CEL では 一部腫瘍に集積するものの、主に肝臓、腎臓および脾臓に蓄積することが示唆された。一般に高分子ポリマーは、静脈内投与後、細網内皮系(RES)による貪食を受けることが知られている。FPBA-CEL は FPBA-PRX と比較して腫瘍選択性が低いため、RES による貪食を受け、時間依存的に肝臓や脾臓に蓄積したものと推察される。以上、FPBA-PRX は静脈内投与後、速やかに腫瘍へ移行し、SA を介してがん細胞内に取り込まれる可能性が示唆された。

2.5 ホウ素濃度および抗腫瘍活性

血中および腫瘍中のホウ素濃度を評価するため、 Colon-26 細胞を移植した担がんマウスの頸部に FPBA-PRX を皮下投与し、ICP-AES によりホウ素濃度を測定 した. 本試験では、同じ10B 濃度 (35 ppm 10B) の BPA および FPBA を対照として用いた. FPBA-PRX および FPBA については、投与 18 時間後にホウ素濃度を測定し、BPA は腫瘍ホウ素濃度がピークに達する 2 時間で測定した. その結果、血中ホウ素濃度は BPA 群と FPBA-PRX 群でおおむね同等であったが、FPBA-PRX 投与群の腫瘍ホウ素濃度は BPA 投与群よりも高く、FPBA-PRX 投与による効率的なホウ素集積が示唆された.

そこで次に、in vivo における抗腫瘍活性を評価するため、FPBA-PRX、BPA および FPBA を担がんマウスに皮下投与し、中性子線照射後の腫瘍サイズを測定した。その結果、FPBA-PRX は BPA および FPBA と比較して、顕著な抗腫瘍活性を示した。また、投与後の体重や血液生化学検査値の変化はほとんど認められず、明らかな副作用は観察されなかった。以上の結果より、FPBA-PRXは優れたホウ素薬剤として可能性を有することが示唆された。

2·6 多重標的型 FPBA-PRX の構築

よりがん集積性に優れる FPBA-PRX の構築を企図して、1) FPBA-PRX の血中滞留性を向上させるとともに正常細胞や赤血球に発現するシアル酸との結合を抑制するカテコール修飾 PEG および 2) 葉酸受容体高発現がん 細 胞 選 択 的 に 取 り 込 ま れ る 葉 酸 修 飾 β -CyD $(FA-\beta$ -CyD) の 2 種類のがん標的化素子を融合した複合型の FPBA-PRX を新規に調製した 9 .

2·6·1 カテコール修飾 PEG

FPBA-PRX のがん集積性を改善する方法として, FPBA ががん細胞以外のシアル酸に結合することを防ぐ 方法が考えられる. ここでボロン酸は、カテコールと可 逆的なボロン酸エステルを形成し、この結合は低 pH で 切断されることが知られている. したがって、FPBA-PRX にカテコール修飾 PEG を混合すると、FPBA とカ テコールのボロン酸エステル形成により, 正常細胞や赤 血球などのシアル酸への結合を抑制可能なことが期待で きる. また、FPBA-PRX の表面に PEG が修飾される結 果,血中滞留性が向上し,EPR効果により腫瘍集積性 が向上することも期待できる. さらに、がんに集積する と、がん組織の低 pH によってボロン酸エステルが切断 され、FPBA-PRX 中の FPBA ががん細胞表面のシアル酸 と結合できるようになり、がん細胞へ取り込まれること が期待できる. そこで、FPBA-PRX にカテコール修飾 PEG を組み合わせた多重標的型 FPBA-PRX を構築し、 がん選択性の向上を企図した. その結果, FPBA-PRX 中 の FPBA は、正常組織の pH 7.4 においてカテコール修 飾 PEG と結合し、シアル酸高発現細胞に対する取り込 みが低下したが、腫瘍微小環境の pH 6.5 においてカテ コール修飾 PEG が解離し、細胞内取り込みが回復した.

ぶんせき 2025 11 375

2·6·2 葉酸修飾 β-シクロデキストリン

FPBA-PRX のがん選択性を更に向上させるため、 FPBA のみならず、新たながん選択的リガンドを修飾し、 二重リガンド化する方法も有用であると考えられる. こ れまで当研究室では、β-CyD にがん標的リガンドである 葉酸を七つ導入した FA-β-CyD を開発し、葉酸受容体高 発現がん細胞選択的にドキソルビシンなどの抗がん剤を 送達可能なことを報告した8). ここで、FPBA-PRX のエ ンドキャップ分子であるアダマンタンは、ホスト-ゲス ト相互作用を介して、β-CvD と強固な複合体を形成する ことが知られている. したがって、FPBA-PRXと FA- β -CyD を混合すると、アダマンタンと β -CyD の相互 作用により、FPBA-PRX の末端に葉酸を修飾可能なこと が期待できる. そこで、FPBA-PRX に FA-β-CyD を組み 合わせた多重標的型 FPBA-PRX を構築し, in vitro で評 価した. その結果, FA-β-CyD は, FPBA-PRX の両末端 に存在するアダマンタンと相互作用可能なことが示唆さ れた. また、FPBA-PRX/FA-β-CyD は、FPBA-PRX 単独 よりも高効率にがん細胞内に取り込まれた.

以上の結果より、カテコール修飾 PEG および FA-β-CyD は、FPBA-RRX のがん選択性を向上させるがん標的化素子として可能性を有することが示唆された.

謝辞 本研究を行うに際して懇篤なる御指導と御協力を賜りました, 松本孔貴先生, 竹内 春氏, 菅原 裕氏, 中家亜美氏, 鈴木 実先生, 櫻井英幸先生, 小野寺理沙子先生, 田原春 徹先生に深く感謝の意を表します.

立 献

- T. Nomoto, Y. Inoue, Y. Yao, M. Suzuki, K. Kanamori, H. Takemoto, M. Matsui, K. Tomoda, N. Nishiyama: Sci. Adv., 6, eaaz1722 (2020).
- 2) K. Maruyama, O. Ishida, S. Kasaoka, T. Takizawa, N. Utoguchi, A. Shinohara, M. Chiba, H. Kobayashi, M. Eriguchi, H. Yanagie: *J. Control. Release*, **98**, 195 (2004).
- Q. Tang, J. Liu, Y. Jiang, M. Zhang, L. Mao, M. Wang: ACS Appl. Mater. Interfaces, 11, 46585 (2019).

- 4) S. Deshayes, H. Cabral, T. Ishii, Y. Miura, S. Kobayashi, T. Yamashita, A. Matsumoto, Y. Miyahara, N. Nishiyama, K. Kataoka: *J. Am. Chem. Soc.*, **135**, 15501 (2013).
- T. Ooya, M. Eguchi, N. Yui : J. Am. Chem. Soc., 125, 13016 (2003).
- 6) A. F. A. Mohammed, M. H. Othman, T. Taharabaru, K. M. Elamin, K. Ito, M. Inoue, M. El-Badry, K. I. Saleh, R. Onodera, K. Motoyama, T. Higashi: *ACS Macro Lett.*, 11, 1225 (2022).
- Y. Matsumoto, H. Arase, H. Ishiki, H. Takeuchi, Y. Sugawara, T. Taharabaru, R. Onodera, M. Suzuki, A. Nakaie, H. Sakurai, K. Motoyama, T. Higashi: *Carbohydr. Polym.*, 354, 123343 (2025).
- A. Okamatsu, K. Motoyama, R. Onodera, T. Higashi, T. Koshigoe, Y. Shimada, K. Hattori, T. Takeuchi, H. Arima: Bioconjug. Chem., 24, 724 (2013).
- H. Ishiki, T. Taharabaru, H. Arase, Y. Matsumoto, R. Onodera, K. Motoyama, T. Higashi: J. Incl. Phenom. Macrocycl. Chem., 105, 569 (2025).

東 大志 (HIGASHI Taishi)

熊本大学大学院生命科学研究部(〒862-0973 熊本市中央区大江本町 5-1). 熊本大学大学院薬学教育部修了. 博士 (薬学). 《現在の研究テーマ》超分子化学と薬学を融合した新規学術分野「超分子薬学」の創生. 《主な著書》東 大志: "シクロデキストリン超分子を基盤分子としたバイオ医薬品のための超利発型製剤技術・DDS 素材の開発,中分子創薬に向けた DDS 開発の新展開",(シーエムシー出版), pp. 163-171 (2022). 《趣味》サ活,旅行,お笑い鑑賞.

E-mail: higashit@kumamoto-u.ac.jp

荒瀬 春輝(Arase Haruki)

熊本大学(〒862-0973 熊本市中央区大江本町 5-1).

伊敷 帆夏(IISHIKI Kaho)

熊本大学(〒862-0973 熊本市中央区大江本町 5-1).

本山 敬一(Мотоуама Keiichi)

熊本大学 (〒862-0973 熊本市中央区大江本町 5-1).

376 ぶんせき 2025 11