入門講座

データ解析:定量・定性からビッグデータの解析まで

Python を用いた 部分最小二乗(PLS)回帰

森 田 成 昭

1 はじめに

本稿ではプログラミング言語の Python¹⁾²⁾を用いて部 分最小二乗 (partial least squares, PLS)回帰³⁾の計算をす る方法を紹介する.種々の機器分析において,着目物質 の量に比例する信号を一つ選定し,単回帰により定量分 析を行ったことがある人は多いだろう.このとき、 東 雑 物の影響などによって定量分析がうまくいかないことが あるが,そのときは単回帰ではなく,機器分析データを 多変量データと捉えて重回帰⁴⁾を試すとよい.

重回帰の基礎となる計算は線形重回帰(multiple linear regression, MLR)であるが、機器分析データの場 合、波長や溶出時間といった説明変数の数が、回帰にあ てはめるサンプルの数よりも多くなりやすく、多重共線 性や過学習(オーバーフィッティング)の影響を受けて うまくいかないことがある.これを回避する方法とし て、主成分分析(principal component analysis, PCA) のような次元削減を行い、説明変数の数をサンプルの数 よりも少なくすることが有効である.PLS 回帰の計算に も次元削減が含まれており、分光分析において比較的ロ バストに定量分析ができることから、汎用的に使われて きた実績がある.

多変量データを使って回帰の計算をする方法には他に も support vector machine (SVM) など,いろいろとある が,Python の機械学習ライブラリである scikit-learn⁵⁾の 使い方がわかってくると書き換えは容易である.また, 定性分析に使われる線形判別分析 (linear discriminant analysis, LDA)のようなクラス分類の学習器も scikitlearn に含まれており,Python を使いこなすことで典型 的なケモメトリックス^{6)~9)}の計算ができるようになる. 以前に機器分析データを用いて Python で PCA の計算 を行う方法を紹介したが¹⁰⁾,本稿では次のステップとし て PLS 回帰の計算方法を解説する.

以降で紹介する Python のサンプルコードは、統合環 境である Anaconda¹¹⁾をインストールしたコンピュータ の Jupyter Notebook¹²⁾で動作することを確認した. ハッ シュ(#)から始まるコメント行を除くと50行しかないサンプルコードなので、手を動かしながらPLS回帰の計算を修得してほしい.

2 データセット

以降では公開されている軽油の近赤外スペクトルを用 いて、ディーゼルエンジンでの着火性の指標であるセタ ン価を回帰する.用いるデータセットはhttps:// eigenvector.com/resources/data-sets/からダウンロード できる.データセットはMatlabフォーマットとcsv フォーマットから選べるが、今回はcsvフォーマットの データを使うことにする.スペクトルデータはdiesel_ spec.csv に、物性値データはdiesel_prop.csv に書き込ま れているので、図1のようにして読み込み、pandas. DataFrame オブジェクトである data に変換しておく.

ここで 2~4 行は必要なライブラリの読み込みを行っ ている. 5~6 行では pandas.read_csv 関数を用いてスペ クトルデータ diesel_spec.csv と物性値データ diesel_ prop.csv を pandas.DataFrame オブジェクトとして読み 込み, それぞれの変数名を spec と prop とした. 7~9 行では spec と prop をまとめて, 新たに data という変 数名の pandas.DataFrame オブジェクトをつくり, data.

001	# デー	-タの読み	込み								
002	import numpy										
003	import pandas										
004	from i	from matplotlib import pyplot									
005	spec	<pre>spec = pandas.read_csv("diesel_spec.csv", header=9, index_col=1)</pre>									
005	prop	<pre>prop = pandas.read_csv("dlesel_prop.csv", header=8, index_col=1) deta = grad_ilos[1.1]</pre>									
007	data	data index = prop iloc[: 2] values									
000	data.	data columns = data columns astype(int)									
010	data = data[data.index.notna()]										
011	displ	av(data)		()]						
		,	,								_
	750	752	754	756	758	760	762	764	766	768	
55.1	-0.028073	-0.025056	-0.020949	-0.016544	-0.011938	-0.007299	-0.003553	-0.002041	-0.001611	-0.001701	
46.5	-0.024340	-0.021221	-0.016691	-0.011428	-0.006280	-0.000757	0.002302	0.002651	0.002176	0.001553	
53.6	-0.021778	-0.018382	-0.014348	-0.010099	-0.005716	-0.001257	0.002011	0.003679	0.004023	0.003941	
45.0	-0.022484	-0.019083	-0.014823	-0.010395	-0.006021	-0.001663	0.001402	0.002746	0.002786	0.002084	
45.8	-0.005264	-0.002123	0.001831	0.006170	0.010394	0.014847	0.018028	0.019488	0.019644	0.019701	
51.2	-0.027873	-0.024856	-0.020544	-0.016217	-0.010540	-0.005448	-0.002336	-0.001839	-0.002849	-0.003495	
50.9	-0.027034	-0.024048	-0.019643	-0.015469	-0.009928	-0.004994	-0.001675	-0.000624	-0.001729	-0.002087	
51.5	-0.026734	-0.023591	-0.019396	-0.014691	-0.009706	-0.004795	-0.001207	-0.000346	-0.001298	-0.001923	
50.6	-0.027399	-0.024747	-0.020104	-0.016381	-0.010736	-0.005670	-0.002499	-0.001968	-0.002908	-0.003550	
50.1	-0.027894	-0.024818	-0.020525	-0.016340	-0.011272	-0.006216	-0.002493	-0.001425	-0.002270	-0.002796	
381 ro	381 rows × 401 columns										

図1 データの読み込み

Partial Least Squares (PLS) Regression in Python.

index が目的変数であるセタン価,data.columns が説明 変数である波長,data.values がスペクトルデータの吸光 度となるようにした.10行では,セタン価に欠損値が あったので,欠損値となっているセタン価と,対応する スペクトルデータを削除した.11行は data の確認であ り,目的変数(セタン価)が381個,説明変数(波長) が401個である横長の行列が得られている.以降で自 身のデータセットを用いて解析を行う場合は,同様に, data.index が目的変数,data.columns が説明変数,data. values が多変量データとなるように pnadas.DatFrame オブジェクトである data を準備すればよい.

3 データの前処理

図2は、図1で読み込んだ381本の近赤外スペクトル をプロットした結果である. 横軸は波長であり、960-1120 nm の領域と1200-1400 nm の領域にそれぞれ、 特徴的な近赤外吸収の信号がみられる. ここでは960-1120 nm の領域だけを選んでPLS 回帰を行ってみるこ とにする.

図3は、 横軸を 960-1120 nm の範囲で指定して、 pandas.DataFrame オブジェクトである data を上書きし、

 015
 # 横軸の範囲指定

 016
 data = data.iloc[:, (960 <= data.columns) & (data.columns <= 1120)]</td>

 017
 data.f.plot(legend=None)

 018
 pyplot.show()

再度プロットした結果である. 横軸の範囲指定は16行 のように, data.columns が960以上1120以下である列 を抽出することで行った. これをみると, この領域にい くつかの近赤外吸収ピークがあり, それらの強度がサン プルによって変化しているのがわかる. しかし, ベース ライン強度の変動も大きく, 解析に影響することが予想 される.

そこで図4のように、フィルターの窓内でデータを 多項式に近似する Savitzky-Golay フィルターを用いて二 次微分スペクトルを計算した. Python で Savitzky-Golay フィルターの計算をするには scipy.signal.savgol_filter 関 数を用いればよい. 20 行のように savgol_filter 関数をラ イブラリから読み込んでおき、21 行のようにいくつか の引数を指定する. 引数の指定方法は、scipy.signal. savgol_filter をインターネット検索すると SciPy のオン ラインマニュアルが見つかるし、あるいは ChatGPT の ようなチャットボットを用いて対話的に教えてもらって もよい. チャットボットを活用するなら「Python で Savitzky-Golay 微分をしたい」くらいから始めてみよう.

今回は21行にあるように,savgol_filter 関数に四つの 引数を指定した.順に説明すると,一つ目は入力デー タ,二つ目はフィルターの窓の大きさ,三つ目は近似す る多項式の次数,四つ目は微分の次数である.すなわ ち,入力データとして pandas.DataFrame オブジェクト である data を指定し,フィルターの窓の大きさを9, 近似する多項式を二次関数,微分の次数を二次微分と指 定した.

フィルターの窓の大きさが9ということは、ここで は横軸の波長間隔が2nmなので、ある波長点での二次 微分強度を計算するのに、左側4点×2nmと右側4点 ×2nmで合計16nmの窓を用いて元データを多項式に 近似し、その多項式を微分したということである。離散 データの平滑化と同様に、窓の大きさが大きいと小さな 信号を消してしまい、逆に小さいとノイズの影響を受け

てしまうので,窓の大きさは慎重にチューニングする必 要がある.

二次微分スペクトルの計算結果(図4)をみると、 ベースライン強度の変動が抑えられており、また、下向 きの四つのピークは、負の強度がサンプルによって異 なっているのがわかる.以降ではこの二次微分スペクト ルを用いて回帰の計算を行うために、21 行で data を二 次微分スペクトルで上書きした.

4 回帰モデルのチューニング

今回は 381 本のスペクトルデータを用いて回帰を行 うが、そのすべてを回帰モデルの構築に使ってしまう と、新たなスペクトルデータが得られたときにロバスト な回帰が行えるかを検証できなくなってしまう.そこで 一般に、全データセットを、モデル構築用のトレーニン グセットと、モデル検証用のテストセットの二つに分け ておき、トレーニングセットで回帰モデリング(キャリ ブレーション)を、テストセットで得られた回帰モデル の検証(バリデーション)を行う.

Python の機械学習ライブラリである scikit-learn には, データセットをトレーニングセットとテストセットに分 けるための sklearn.model_selection.train_test_split 関数 が準備されている. ここでは 25 行で train_test_split 関 数をライブラリから読み込んでおき, 26 行で train_ size=0.6 と指定することで,データセットである data を 60 % と 40 % の割合で分割し,トレーニングセットを train,テストセットを test という変数名でメモリに書 き込んだ.最後の引数を random_state=12 としたが,こ れによりデータセットをランダムに分割するときの乱数 の初期値を指定している.このときの data, train, test にそれぞれ割り振られたデータのセタン価を 27 行でバ イオリンプロットした.図5をみると,テストセット

データのスプリット 024 025 from sklearn.model selection import train test split train, test = train_test_split(data, train_size=0.6, 026 random_state=12) 027 pyplot.violinplot([data.index, train.index, test.index]) 028 pyplot.show() 60 55 50 45 40

図5 データのスプリット 左からそれぞれ、全データセット、トレーニングセット、テス トセットにおける目的変数(セタン価)のバイオリンプロット.

2.5

3.0

2.0

1.5

のセタン価の分布がトレーニングセットのセタン価の分 布より狭くなっているのがわかる.もしテストセットの 目的変数の分布がトレーニングセットのそれよりも広く なっているときは、モデル構築時に学習していない範囲 を予測しなければならなくなるので、予測誤差が大きく なることが予想される.データセットの分割は、ここで 示したように、テストセットの目的変数の分布がトレー ニングセットの分布よりも狭くなるように random_ state の値を適切に選んで指定しておくとよい.

Python で PLS 回帰の計算をするには sklearn.cross_ decomposition.PLSRegression クラスを用いればよい. ここでは 30 行で PLSRegression クラスをライブラリか ら読み込んでいる. PLS 回帰におけるハイパーパラメー タは次元削減の成分数だけである. 例えば成分数を5に 固定してYをX で PLS 回帰するには PLSRegression(5). fit(X,Y) とすればよい. 今回はX に二次微分スペクト ルを,Yにセタン価を指定する.

次にハイパーパラメータのチューニングについて説明 する. 今回はハイパーパラメータが一つだけなので1次 元のグリッドサーチを行う. グリッドサーチを行うには sklearn.model_selection.GridSearchCV クラスを用いれ ばよい. ここでは 31 行で GridSearchCV クラスを見いれ ばよい. ここでは 31 行で GridSearchCV クラスをライ ブラリから読み込んでいる. 32 行で, 1 から 20 まで1 ずつ増加する 1 次元配列 p1 を準備し, 32 行で PLS 回 帰の成分数 n_components の値が p1 である辞書型の変 数 parm を準備した. これを使って1 次元グリッドサー チを実行するには 34 行のように書けばよい. ここで cv は *k*-fold クロスバリデーションの分割数であり, 今回 は cv=5 と指定することで 5-fold クロスバリデーション を行った. グリッドサーチの結果は変数 search に格納 し, 35 行でその結果を表示した. 今回は成分数 8 でク

10

ロスバリデーションのスコア(決定係数の平均)が最大 値 0.504…となっている。36~37 行は横軸を成分数。 縦軸をクロスバリデーションのスコアとしたプロットで あり、図6を見ると成分数8までは緩やかにスコアが 増加し、それ以降は急激に減少していることから、成分 数9以上で過学習が起こっていると判断できる. 39行 ではグリッドサーチで得られた最適なハイパーパラメー タ(ここでは成分数8)を使ってトレーニングセットで 回帰モデルを構築し、得られた結果を変数 model に代 入した.

5 回帰結果の評価

得られた回帰モデルにスペクトルデータを入力してセ タン価を予測してみよう (図7). ここでは 40 行のよう に、153本あるテストセットの1本目のスペクトルを取 り出し, spec とした. 41 行では model.predict メソッ ドにこのスペクトルデータを入力して結果を出力した. ただしこの方法では、Python で得られた回帰モデルを 測定装置に組み込む際に、Python で実装しなければな らなくなる.

そこで次に、得られた回帰モデルの実体である回帰係 数を用いて同様の予測を行ってみよう. modelの回帰 係数は model.coef_ で取り出すことができる.ただし, 回帰係数 model.coef_ にスペクトルデータ spec を直接 当てはめても正しい予測値は得られないことに注意が必 要である.これは目的変数もオートスケーリングされて いるためであり,正しく予測するには42行のようにし てオートスケーリングを元に戻さなければならない.

# 回帰係数を用いた予測					
<pre>spec = test.iloc[0].values</pre>					
<pre>print(model.predict([spec])[0][0])</pre>					
<pre>print(((spec - modelx_mean) / modelx_std @ model.coef_[0] +</pre>					
<pre>modely_mean)[0])</pre>					
53.10374305917401					
53.10374305917401					

図7 回帰係数を用いた予測

続いて回帰の結果をプロットしてみよう(図8).44 行と 45 行でそれぞれ,得られた回帰モデルにトレーニ ングセットとテストセットを当てはめ、キャリブレー ションとバリデーションの結果を計算した.46行で作 図する領域を準備し、47行で(横軸)=(縦軸)となる 対角線をプロットしている。ここで横軸はセタン価の真 値,縦軸は PLS 回帰によるセタン価の予測値である. 48 行によってキャリブレーションの結果が青色に,49 行によってバリデーションの結果がオレンジ色に、それ ぞれプロットされた.

この回帰の結果を評価してみよう. ここでは二乗平均 平方根誤差(root-mean-square error, RMSE)と決定係 数 R²を計算してみる. 二乗平均誤差 (mean-squareerror, MSE) は sklearn.metrics.mean_squared_error 関

050 pyplot.show()

横軸はセタン価の真値,縦軸は PLS 回帰によるセタン価の予 測値. 青色はキャリブレーションの結果, オレンジ色はバリ デーションの結果.

051	# RMSEと決定係数の計算						
052	from sklearn.metrics import mean_squared_error, r2_score						
053	print("calibration")						
054	<pre>print("RMSE =", numpy.sqrt(mean_squared_error(train.index,</pre>						
	calibration)))						
055	<pre>print("R^2 =", r2_score(train.index, calibration))</pre>						
056	print("")						
057	print("validation")						
058	<pre>print("RMSE =", numpy.sqrt(mean_squared_error(test.index,</pre>						
	validation)))						
059	<pre>print("R^2 =", r2_score(test.index, validation))</pre>						
calibration							
RMSE = 2.1063809198962775							
R^2 = 0.6649517526812241							
validation							
RMSE = 2.0962595727739464							
$R^2 = 0.6012617326815684$							

図9 RMSE と決定係数の計算

数で計算できるので, RMSE はこれの平方根を計算すれ ばよい. 決定係数は sklearn.metrics.r2_score 関数で計 算できる. 図9にキャリブレーションとバリデーショ ンにおけるそれぞれの RMSE と決定係数の計算結果を 示した.

今回は図3で960-1120 nmの領域を選んだが、1200-1400 nm の領域など,他の波長領域を選んでみる,図4 の二次微分で窓の大きさを9としたが他の値にしてみ る、といった工夫で、よりよい回帰モデルが得られるか もしれないので挑戦してみてほしい. 二次微分における 窓の大きさをハイパーパラメータとして PLS 回帰モデ ルをチューニングするには、パイプラインと呼ばれる計 算テクニックが必要となるが、紙面の都合により説明は 割愛する. 実装するには sklearn.pipeline.make_pipeline 関数を用いればよい²⁾.二次微分における窓の大きさと 次元削減における成分数のように、二つのハイパーパラ メータを同時に最適化するには、二次元のグリッドサー チを行えばよく、さらに高次のグリッドサーチも GridSearchCV クラスで実装が可能である.

6まとめ

本稿では Python を用いて PLS 回帰の計算を行う方法 を紹介した. 説明は必要最低限にとどめており,まずは ここまでの技術をしっかりと修得してほしい. データの 前処理とモデルのチューニングは腕の見せ所であり,工 夫することでよりロバストな学習器を得ることができ る.

学習器に入力する機器分析データや教師データは人が 測定することになるが、それらの誤差よりも計算による 推定値の誤差が小さくなることは原理的にあり得ない. 機器分析のプロは、サンプルの前処理、機器分析の最適 化、計算データの前処理、計算の最適化の四つのプロセ スに精通している必要があり、分析技術だけでなく、計 算技術も鍛錬してほしい.

文 献

- 金子弘昌: "化学のための Python によるデータ解析・機 械学習入門", (2019), (オーム社).
- 2) 森田成昭: "Python で始める機器分析データの解析とケモメトリックス", (2022), (オーム社).
- S. Wold, M. Sjöström, L. Eriksson : Chemometrics Intellig. Lab. Syst., 58, 109 (2001).
- 4) 永田 靖, 棟近雅彦: "多変量解析法入門", (2001), (サ

イエンス社).

- A. C. Müller, S. Guido, 中田 秀: "Python ではじめる機械 学習: scikit-learn で学ぶ特徴量エンジニアリングと機械 学習の基礎", (2017), (オライリー・ジャパン).
- 6) 宮下芳勝,佐々木慎一: "ケモメトリックス 化学パターン 認識と多変量解析",(1995),(共立出版).
- 7) 尾崎幸洋, 宇田明史, 赤井俊雄: "化学者のための多変量 解析 ケモメトリックス入門", (2002), (講談社サイエン ティフィク).
- 8) 長谷川健: "スペクトル定量分析", (2005), (講談社サイ エンティフィク).
- 9) 森田成昭:日本結晶成長学会誌, 49,49 (2022).
- 10) 森田成昭: ぶんせき (Bunseki), **2020**, 290.
- 11) 〈www.anaconda.com〉 (2023 年 11 月 27 日確認).
- 池内孝啓, 片柳薫子, 岩尾エマはるか, @driller: "Python ユーザのための Jupyter [実践] 入門", (2017), (技術評 論社).

森田 成昭(MORITA Shigeaki)

大阪電気通信大学工学部(〒572-8530大 阪府寝屋川市初町18-8).東京農工大学大 学院生物システム応用科学研究科博士後期 課程修了.博士(学術).《現在の研究テー マ》分子分光とデータ解析.《主な著書》 "Python で始める機器分析データの解析と ケモメトリックス",(オーム社).《趣味》 ジャズドラム.

E-mail : smorita@isc.osakac.ac.jp

— 原 稿 隹 とは御遠慮ください. 又, 二重投稿は避けてくだ トピックス欄の原稿を募集しています さい. 内容:読者の関心をひくような新しい分析化学・分析 ◇採用の可否は編集委員会にご一任ください. 原稿の 技術の研究を短くまとめたもの. 執筆上の注意:1) 1000 字以内(図は1枚500字に換 送付および問い合わせは下記へお願いします. 算)とする。2)新分析法の説明には簡単な原理 〒141-0031 東京都品川区西五反田 1-26-2 図などを積極的に採り入れる.3)中心となる文 五反田サンハイツ 304 号 献は原則として2年以内のものとし、出所を明記 する. (公社)日本分析化学会「ぶんせき」編集委員会 なお.執筆者自身の文献を主として紹介するこ [E-mail : bunseki@jsac.or.jp]