技術紹介

俊

祐

邉

リチウムイオン電池のグラファイト 負極上に生成された SEI 被膜の XPS 分析と深さ方向分析

1 はじめに

リチウムイオン電池 (LIB) はモバイル機器や電気自 動車など様々なところで用いられている. LIB の電池特 性は、 負極上に生成される SEI (solid electrolyte interphase) 被膜に大きく左右される. SEI 被膜は 初回 充電時に負極上に生成され、その構造や厚みが電池性能 に大きな影響を与えることが知られている¹⁾. SEI 被膜 は LIB の充放電に必要不可欠なものであるが、必要以 上に厚みが増すと電池性能の低下につながる. このた め、LIBのさらなる性能向上には、SEI被膜の構造を解 析し, SEI 被膜を制御することが重要である. SEI 被膜 は数 nm と薄いことや大気暴露で変質することから²⁾. 真空中で表面分析が可能な XPS (X線光電子分光法: X-ray photoelectron spectroscopy) での分析事例が多く 報告されている³⁾.本稿では、ラボ用 HAXPES (hard X-ray photoelectron spectroscopy)である単色化 Ag La 線と従来から使用されている単色化 Al Kα線を用いて, LIB 負極上に生成された SEI 被膜を非破壊で深さ方向に 分析した事例を紹介する.また,SEI 被膜を Ar ガスク ラスターイオンでスパッタエッチングし、深さ方向に分 析することで, SEI 被膜の構造と厚みの解析を試みた事 例も紹介する.

2 実験方法

作製したコインセル型 LIB の構成を表1に示す.充 放電にともなう SEI 被膜の変化を調べるために,初期 (組み上げ後,充放電なし),初回充放電,100 サイクル 充放電の3条件の分析試料を準備した.電池の解体作 業は,アルゴン雰囲気のグローブボックス内(O₂:

負極	天然球状黒鉛
正極	NCM523 (LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂)
負極のバインダー	CMC-Na, SBR
電解液	$1M/L-LiPF_6 + EC/DEC/EMC$ (1:1:1)
セパレータ	ポリオレフィン系 25 µm

表1 作製したコインセル型の LIB

0.28 ppm, 露点:-86.8 ℃) で行い,取り出したグラ ファイト負極表面は,電解液の成分であるジメチルカー ボネート (DMC) で洗浄した後,紙テープで試料台に 固定した. SEI 被膜は大気中で変質するため,エアセン シティブサンプルトランスポーターを用いて大気非暴露 で XPS に試料を導入した.

渡

XPS 装置は, KRATOS ULTRA2 (Kratos Analytical 社 製, 英国名 AXIS Supra)を用いた.

3 ラボ用 HAXPES (単色化 Ag La 線) と単色 化 Al Ka 線を用いた SEI 被膜の測定

3.1 測定条件

測定は, 試料上の同一箇所において, 単色化 Al Kα線 (1486.6 eV) と単色化 Ag Lα線 (2984.2 eV) を用いて 行った. 従来から使用されている単色化 Al Kα線は, 表 面から約 10 nm の深さまで, ラボ用 HAXPES の単色化 Ag Lα線は, 表面から約 20 nm までの情報が得られる. この分析深さの違いを利用して, 非破壊で SEI 被膜の深 さ方向の構造を考察した. また, 測定時は帯電中和機構 を使用した.

3·2 単色化 Al Kα線での測定結果

単色化 Al Kα線で測定した C 1s スペクトルを図 1 に 示す.初期(組み上げ後,充放電なし)では負極のグラ ファイトがメインとなっているが,初回充放電では, SEI 被膜の成分とみられる,C-H,C-O,COO,CO₃ が増加し,負極のグラファイトのピーク強度が減少して いる.100 サイクル充放電では,さらに SEI 被膜とみら れる成分が増加しており,グラファイトのピークはわず かに検出される程度となった.

図2に,単色化 Al Kα線で測定した F ls スペクトル を示す.初期と充放電後では大きな形状の違いが見られ た.充放電後は,LiF と思われるピークがメインとなっ ている.

3·3 単色化 Ag Lα線での測定結果

図 3 に単色化 Ag Lα 線で測定した C 1s スペクトルを 示す. 単色化 Al Kα 線の結果と比較すると,充放電後の

図1 充放電サイクル数の異なる LIB のグラファイト負極の C1s スペクトル(単色化 Al Kα線)

図 2 充放電サイクル数の異なる LIB のグラファイト負極の F1s スペクトル(単色化 Al Kα線)

図 3 充放電サイクル数の異なる LIB のグラファイト負極の C 1s スペクトル(単色化 Ag Lα線)

図 4 充放電サイクル数の異なる LIB のグラファイト負極の F1s スペクトル(単色化 Ag La 線)

グラファイトのピーク強度が大きくなっていることがわ かる. 図4に単色化 Ag Lα線で測定した F 1s スペクト ルを示す. 単色化 Al Kα線の結果と同様に,初期と充放 電では大きな形状の変化が見られた.

3.4 考 察

図1より、初期(組み上げ後、充放電なし)では、グ ラファイトのピークがメインであるが、充放電後では、 SEI 被膜由来と推測される成分(C-H, CO₃など)が増 加して、グラファイトのピーク強度が大きく減少してい ることから, SEI 被膜は初回充放電で負極上に生成され たと考えられる.また、初期と充放電後でグラファイト のピーク位置が異なっているのは、充放電により、グラ ファイトの層間に Li イオンが入り込んだためであると 考えられる⁴⁾. 充放電にともなう SEI 被膜の増減を確認 するため、負極のグラファイトに対する、SEI 被膜とみ られる成分の比率をグラフにした. グラファイト、C-H, C-O, C=O, COO, Shake-up (不飽和結合による $\pi - \pi^*$ 遷移由来), Li₂CO₃はC 1sの波形分離から, LiF はF1sの波形分離から定量値を求めて、グラファイト に対する各成分の比率を算出した.図5に単色化 Al Ka 線の測定結果から比率を算出したものを示す。充放電回 数の増加とともに、ほとんどの成分が増加傾向であるの に対し、LiFは初回充放電から100サイクル充放電で減 少していることがわかった.図5と同様に、単色化Ag Lα線による測定結果から、負極のグラファイトに対す る各成分の比率をグラフにしたものを図6に示す.充 放電回数が増えるに従い、すべての成分の比率が増加し ていることがわかった.図5と6の結果より,SEI被膜 とみられる成分は充放電を繰り返すことにより、増加す ることが示唆された.また、分析深さの異なる2種類 のX線を用いた測定結果の比較により, SEI 被膜の成分

図 6 グラファイト成分に対する SEI 被膜成分の比率の変化 (単色化 Ag Lα 線)

とみられる LiF は、Li₂CO₃ よりも内部(グラファイト に近いところ)で多くなっていると推測される.

Ar ガスクラスターイオンによる SEI 被膜の XPS 深さ方向分析

4·1 測定条件

作製した試料のうち、100 サイクルの充放電を行った LIB のグラファイト負極を Ar ガスクラスターイオンで スパッタエッチングし、深さ方向分析を行った. Ar ガ スクラスターイオンは、無機物である SiO₂ のスパッタ エッチングが可能かつ、有機物への損傷が少ない、加速 電圧 10 kV, クラスターサイズ 500 を用いた. また、ス パッタエッチングは SiO₂ 換算で約 25 nm まで実施し、 1 回にスパッタエッチングする深さとスパッタエッチン グの回数は、表 2 の通りとした. XPS 測定は、単色化 表2 1回あたりのスパッタエッチング深さとスパッタエッチ ングの回数

SiO ₂ 換算 (nm)	エッチング回数
約 0.1	30
約 1.0	10
約 2.0	5

図 8 Ar ガスクラスターイオン(10 kV Ar₅₀₀⁺)の深さ方向分 析による F 1s スペクトル形状の変化

Al Kα線(1486.6 eV)と帯電中和機構を使用した.

図7に深さ方向分析で得られたClsスペクトルの重 ね書きを示す.エッチングするにつれて,SEI被膜の成 分とみられるC-H(285.0 eV),C-O(286.7 eV), COO(288.9 eV),CO₃(290.1 eV)のピークが減少し, 負極のグラファイトの層間にLiイオンが入り込んだと 思われるピーク(283 eV)が確認された. 図8に深さ方向で得られたFlsスペクトルの重ね描 きを示す. 電解液の成分とみられるLiPF₆とLi_xPF_yは, 数回のエッチングで無くなり,内部ではLiFのピークの みが確認された.

4.2 Depth Profile

図9に深さ方向分析で得られた元素別のDepth profile を示す. 試料内部に進むにつれて, F,Oが減少 し,Liが増加している.図10にC1sの波形分離から算 出した,化学結合状態別のDepth profile を示す.図中 の点線①はCHのプロファイルの上部プラトー,②は 下部プラトー,③は①と②の濃度50%位置,④は③と C-Hのプロファイルの交点でのSiO₂換算の深さを示し ている.このようにして,SEI被膜の有機層の厚みを C-Hのプロファイルから見積もった結果,表面から約 3 nm であると推測された.

図 11 に C 1s の 波形分離から 算出した Li₂CO₃ の Depth profile を示す. グラフより, Li₂CO₃ は表面から 約 5 nm の深さまで分布していると推測される. 図 12 に F 1s の波形分離から算出した LiF の Depth profile を 示す. グラフより, LiF は表面から約 7 nm の深さまで 分布していると推測される.

4·3 考 察

図 13 に Ar ガスクラスターイオンの Depth profile から推測される SEI 被膜の構造と厚みを示す. LIB のグラファイト負極上に形成された SEI 被膜は,表面が有機成分で覆われており,その下に無機成分の Li₂CO₃ と LiF が存在すると推定される.また,Li₂CO₃ は LiF よりも表面側に多く存在することが示唆された.これは,同一

図 9 Ar ガスクラスターイオン(10 kV Ar₅₀₀⁺)を用いた元素 別の Depth Profile

図 10 Ar ガスクラスターイオン(10 kV Ar₅₀₀⁺)を用いた C 1s 化学結合状態別の Depth Profile

図 11 Ar ガスクラスターイオン(10 kV Ar₅₀₀⁺)を用いた Li₂CO₃の Depth Profile

図 12 Ar ガスクラスターイオン(10 kV Ar₅₀₀⁺)を用いた LiF の Depth Profile

図 13 Ar ガスクラスターイオンを用いた深さ方向分析の結果 から推測される SEI 被膜の構造と厚み

試料を分析深さの異なる2種類の線源(Al Kα線とAg Lα線)を用いて非破壊で深さ方向に分析した結果とよ く一致している.このことから,Ar ガスクラスターイ オンによる SEI 被膜の深さ方向分析の結果は,妥当であ ると考えられる.

5まとめ

XPS でグラファイト負極上に生成された SEI 被膜を 分析した事例を紹介した. XPS のオプションであるラ ボ用 HAXPES の単色化 Ag La 線や Ar ガスクラスター イオンを用いることで, SEI 被膜の構造や厚みを算出す ることが可能である.本内容が,LIB の分析に携わる 方々の参考になれば幸いである. **謝辞** 分析した試料は,株式会社ダイネンマテリアルよりご 提供頂きました.感謝申し上げます.

文 献

- 1) 安部浩司:FB テクニカルニュース, 75,1 (2019).
- 2) 吉野彰: ぶんせき (Bunseki), 2013, 580.
- H. Zhang, D. Wang, C. Shen : Appl. Surf. Sci., 507, 145059 (2020).
- 4) H. Zhang, Y. Yang, D. Ren, L. Wang, X. He : *Energy Storage Mater.*, 36, 147 (2021)

本稿は、表面分析研究会が発行する Journal of Surface Analysis に投稿した以下の二つを編集して作成したものである. [1] 渡邉俊祐: J. Surf. Anal., **29**, 2, 111 (2022).

[2] 渡邉俊祐: J. Surf. Anal., 30, 1, 44 (2023).

渡邉 俊祐 (WATANABE Shunsuke) 株式会社島津製作所分析計測事業部 Solutions COE (〒604-8511 京都市中京 区西ノ京桑原町1). 奈良先端科学技術大 学院大学物質創成科学研究科博士前期課程 修了.《現在の研究テーマ》XPSのアプリ ケーション開発(主にLIB 関連).《趣味》 ランニング.

E-mail : w-shun@shimadzu.co.jp

会社ホームページ URL: https://www.an.shimadzu.co.jp/

関連製品ページ URL:

https://www.kratos.com/