X線集光ミラー:軟X線集光ミラーの開発と応用

1 X線集光ミラーとは

X線の集光は最も重要なX線光学技術の一つである。 X線集光は、計測技術の空間分解能の向上、あるいは 集光点における光強度の増強の基礎であり、物性研究や X線光学、産業利用技術の発展を支えてきた。光の理 論的な最小集光サイズは回折限界の式(0.62*λ*/*NA*)に よって決まるため、波長の短いX線(0.1~1 nm)は、 可視領域では理論的に不可能な直径100 nm以下の集光 スポットにまで集光される。ナノメートルスケールの集 光を実現すべく、X線ナノ集光ミラーの開発が精力的 に行われた。

X線集光ミラーの表面は楕円形状であり, 焦点に光 源点を一致させることにより, 光源から発した X線は ミラーで反射後もう片方の焦点に収束する。X線集光 ミラーの原理は極めてシンプルであるが, その製造は, X線の波長の短さ故に困難を強いられることとなる。 例えば, ミラー面上に高さdの誤差が存在するとき, 波長λのX線が斜入射角θで入射した際に発生する反 射光の波面収差量は2d sin θと見積もることができる。 一方で, レイリーの1/4波長則によると, 回折限界に おける集光のためには波面収差量はλ/4以下に抑えな ければならない。すなわち, X線ミラーにおいて, 回 折限界で集光するために必要なミラー面の形状精度は, 次の式で見積もられる。

例えば,硬X線の場合について考えてみる。波長0.1 nm (λ)の硬X線が,斜入射角度4mrad(θ)で入射した場合,式(1)から必要形状精度は3nm,すなわち,シングルナノメートルレベルの極めて高い形状精度が, X線集光ミラーに求められることとなる。このような超高精度ミラーの製造は,最初不可能なものと思われていたが,大阪大学のグループにより超精密加工技術(EEM,PCVM等)や超精密表面形状計測技術(MSI, RADSI等)が開発された^{1)~3)}。これらの技術で作製された楕円ミラー2枚を直交配置した KBミラーシステムにより,硬X線の sub-10 nm 集光が実現された⁴⁾。現在では,世界中の放射光施設で硬X線集光ミラーが使用されており,集光X線ビームが実験に供されてい

本 山 央 人, 三 村 秀 和

る。

本稿では、現在、製造プロセスの開発が進められてい る、軟 X 線集光ミラー開発の現状について紹介する。 硬 X 線集光ミラーと軟 X 線集光ミラーの違いや軟 X 線 集光ミラー製造における課題、および新規開発されたミ ラー製造プロセスについて紹介する。また、これまでに 実施した、いくつかの軟 X 線ビームラインへの導入事 例を紹介し、最後に、稼働を目前に控えた東北地方の放 射光施設における、軟 X 線ナノ集光の可能性について 述べる。

2 軟 X 線集光ミラーの開発

硬 X 線のナノ集光ミラーが普及している一方で,軟 X 線領域における安定的な 100 nm 集光は依然として難 しい。式(1)を見ると波長の長い軟 X 線の方が容易に 製造できそうであるように思われるが,実際はそうでは ないためである。回折限界の式に立ち戻ると,長い波長 の光で同じサイズに集光するためには,その分 NA (開 口数:numerical aperture)を大きくしなければならな いことがわかる (図 1)。NA を大きくするためには, ミラーの曲率半径を小さくし,斜入射角度を大きくする 必要がある。つまり,波長が長い分,斜入射角度θを大 きくする必要がある。その結果,式(1)より,軟 X 線 集光ミラーにも硬 X 線集光ミラーと同程度の形状精度 が必要であることがわかる。それでは,硬 X 線集光ミ ラーと軟 X 線集光ミラーの違いは何なのか。それは, ミラー表面の形状である。NA を大きくすると,楕円形

ぶんせき 2021 11

状の曲率半径が小さくなり,表面の形状が急峻となる。 表面が急峻になるほど,その形状をナノメートル精度で 加工,計測することが難しくなり,このことが軟 X 線 ナノ集光ミラー開発の大きな課題となっている。

現在,作り込みミラー(Wolter I ミラー)と回転体 ミラー(回転楕円ミラー, Wolter ミラー)の2種類の 軟 X 線集光ミラー開発が進められている(図 2)。前者 は平面基板上に曲面が創成されたミラーであり、後者は 中空形状の内側に曲面が形成されている。どちらも斜入 射光学系であるが、回転体ミラーの場合、光軸を挟んだ 両側から光線がやってくるため、高 NA 集光が可能と なる。理論的な最小集光サイズは 10 nm を下回る5)。一 方で、製造が難しいという課題もあり、この点では作り 込みミラーに軍配があがる。化学的に安定なシリコンや 合成石英を基板として製造され、加工完了後の追加工や 表面のコーティングも比較的用意である。導入される ビームラインの光源性能(主に波長)と目標集光サイズ を勘案し、作り込みミラーと回転体ミラー、どちらを導 入するかが選択される。以下では、回転体ミラーの製造 方法と導入事例.および作り込みミラーの導入事例を紹 介する。

3 回転体ミラーの作製

3·1 製造方法

回転楕円ミラーは光軸に関して楕円形状を1回転さ せた際の包絡線を反射面とする中空形状ミラーである。 集光点に近いほど内径は狭くなり,最下流端の直径は5 mm 程度となる。このような細いミラーの内側をナノ メートル精度で形状計測,加工するのは、既存の手法で は不可能に近い。そのため、図3に示す電鋳法を用い たナノ精度形状転写プロセスが開発された6)7)。まず, 回転楕円形状の合成石英製マンドレルを製作する。精密 研磨技術とプローブ計測技術を組み合わせた加工プロセ スにより,形状精度10nm(PV)まで作り込まれる。続 いて、電子ビーム蒸着でマンドレル表面に厚さ100 nm 前後の金属層を形成した後、電鋳法を用いてマンドレル 表面に金属層を電気析出させる。熱変形による転写精度 の低下を避けるため、電鋳プロセスは室温条件下で行わ れる。最後に、温浴槽でマンドレルと電析層の温度を上 昇させ、合成石英と金属の熱膨張率の違いを利用してミ ラーをマンドレルから分離する。ミラーの材料には,主 にニッケルが用いられる。本技術は、大学の研究室で開 発され、現在は夏目光学株式会社に技術移転がなされて いる。技術移転後も、ミラーの形状精度向上のための研 究開発が継続して行われている。また、本技術で作製可 能なミラー形状は回転楕円ミラーに限らない。後述する 回転体 Wolter ミラーなど、広範な回転体形状ミラーの 作製に応用することができる。

3·2 SPring-8 への導入例

SPring-8 の軟 X 線ビームライン BL25SU へのミ ラー導入事例を紹介する⁸⁾。本ビームラインでは、2 枚 のミラーから構成される集光システムが導入された(図 4)。上流側のミラーは、リング集光ミラーと呼ばれ、

図4 (a) 二段集光光学系の模式図, (b) 集光プロファイルの計測例

図5 (a) 集光システムの模式図, (b) 集光プロファイルの計測例

入射した X 線をリング状に集光し,その後リング上に 拡大して回転体ミラー内全面を照明する機能を持 つ⁹⁾¹⁰⁾。下流側には,準 Wolter ミラーと呼ばれるミ ラーが設置されている。回転楕円ミラーが楕円曲面のみ から構成されるのに対して,この回転体 Wolter ミラー は双曲面,楕円面の2枚の曲面から構成される。 Wolter ミラーは Abbe の正弦定理を擬似的に満たすた め,理論的に必要なアライメントの精度が緩和されると いう特徴を持つ。下流側のミラーは,集光リングを仮想 光源とするよう設計されており,通常の Wolter ミラー とわずかに異なる形状プロファイルを有する。そのた め,準 Wolter ミラーと呼称される。

本集光システムを用いることで,波長4nmの軟X線 を175×135nmのナノ領域に集光することに成功した⁸⁾。光学系のスループットは約40%であった。集光 ビームを用いたタイコグラフィー顕微計測装置に統合されており,幅80nmの微細構造計測にも成功している。ミラーの形状精度のさらなる改善による50nmの 極微集光ビーム形成が計画されている。

3·3 SACLA への導入例

X線自由電子レーザー施設 SACLA の軟 X線ビーム ライン(BL1)への導入事例を紹介する¹¹⁾。BL1 には KB ミラーによるマイクロ集光装置が常設装置として整 備されている。この KB ミラーと回転楕円ミラーを組み 合わせた集光装置が整備された。回転楕円ミラーを組み さわせた集光装置が整備された。回転楕円ミラーの仮想 光源点からミラーまでの距離を KB ミラーの焦点距離の 1/4 とすることにより、実験ハッチ入射時の直径(10 mm)を 1/4 のサイズ(2.5 mm)に縮小して、回転楕 円ミラーに入射させることが可能となる(図5)。これ により、小型の回転楕円ミラーを利用した、ビームを取 りこぼすことのない高スループット集光を実現すること ができる。

BL1 の発振波長は 10~20 nm である。集光性能テス トにより,波長 10 nm の軟 X 線が 500×550 nm の領域 に集光されていることが確認された。また,本ビームラ インではフェムト秒軟 X 線パルスが発振している。ナ ノ集光することにより,集光点において極めて高い集光

ぶんせき 2021 11

強度を生成することが可能であり、その値は最大で8× 10¹⁶ W/cm² と見積もられた。本集光システムを用い て、非線形現象の一種である可飽和吸収の観測や、磁気 光学カー効果を利用した磁性材料分布の高分解能計測な どが実施されている¹¹⁾¹²⁾。

4 作り込みミラーの導入例

最後に,作り込みミラーの導入事例を紹介する(図 6)¹³⁾。3・2節でも紹介した SPring-8 BL25SUに,プ ローブビームの微細化による ARPES の高分解能化を目 的として,作り込み Wolter ミラーによる集光システム が導入された。合成石英を基板とし,修正加工と形状計 測を繰り返すことにより,形状精度1nm(RMS)が達 成されている。また,波長1~4nmで波長掃引するこ とを想定し,ミラーの表面はこの波長帯域でフラットな 反射率を有する金でコーティングされている。

集光点における典型的なビームサイズは 0.4×4.0 μm 程度であった。ビームの扁平は、光源スリットの形状 (開口 20×200 μm) に起因するものである。ARPES で は、固体表面からの光電子放出を増強するために、プ ローブビームは斜入射で固体表面に入射させる。典型的 な計測条件におけるサンプル上でのビームのフットプリ ントは直径約 5 μm の円形となるように設計されてい る。本集光ミラーを統合することにより、今後、高分解 能 ARPES 計測の共用利用が進められる予定である。

5 ま と め

本稿では,軟X線領域のナノ集光光学素子として開 発が進められている,回転体ミラーと作り込みミラーを 紹介した。いずれのミラーも,放射光施設,X線自由 電子レーザーに導入され,それらを利用した実験は一定 の成果をあげている。ミラー製造プロセスの開発が進 み,軟X線集光ミラーの利用がますます拡大するもの と期待される。

現在,東北大学の青葉山新キャンパスに,東北地方初 の放射光施設が2023年の稼働開始を目指して建造され

図 6 導入された作り込み Wolter ミラーの外観写真

ている。電子エネルギーは 3 GeV に設計されており, 軽元素材料をターゲットとして 0.1~10 keV での高フ ラックスビームの利用が計画されている。冒頭で述べた ように,軟X線の集光はサンプルへの照射強度を飛躍 的に高めることができる。ミラー光学系であれば,高い スループットでの集光が可能である。そのため,次世代 放射光施設では,多くのビームラインにおいて,集光ミ ラーの導入が計画されている。

高 NA が求められる軟 X 線集光ミラーはいまだ製造 プロセスにおいて開発すべき課題が多く理想的な性能を 達成するためには更なる発展が必要である。そのため, OAM (Organic Abrasive Machining) 法など,新しい加 工・計測技術の開発が精力的に行われている¹⁴⁾。今 後,これまで開発してきた軟 X 線ミラーが多くの軟 X 線分析装置の性能向上に寄与することを期待している。

謝辞 本研究開発の遂行にあたり多くの研究者の方から多大 な支援をいただきました。東京大学の竹尾陽子博士,山口豪太 氏,高輝度光科学研究センター (JASRI)の大橋治彦博士,仙 波泰典博士,岸本輝氏,理化学研究所の矢橋牧名博士,大和田 成起博士,江川悟博士,久保田雄也博士,登野健介博士,夏目 光学株式会社の久米健大博士,松澤雄介氏,平栗健太郎氏,橋 爪寛和氏に深く感謝いたします。

文 献

- K. Yamauchi, H. Mimura, K. Inagaki, Y. Mori: *Rev. Sci. Instrum.*, 73, 4028 (2002).
- K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, K. Ueno, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, T. Ishikawa, Y. Mori: *Rev. Sci. Instrum.*, 74, 2894 (2003).
- 3) H. Mimura, H. Yumoto, S. Matsuyama, K. Yamamura, Y. Sano, K. Ueno, K. Endo, Y. Mori, M. Yabashi, K. Tamasaku, Y. Nishino, T. Ishikawa, K. Yamauchi: *Rev. Sci. Instrum.*, **76**, 045102 (2005).
- 4) H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, K. Yamauchi : *Nature Physics*, 6, 122–125 (2010).
- H. Motoyama, T. Saito, H. Mimura : *Jpn. J. Appl. Phys.*, 53, 22503 (2014)
- H. Mimura, Y. Takei, T. Kume, Y. Takeo, H. Motoyama, S. Egawa, Y. Matsuzawa, G. Yamaguchi, Y. Senba, H. Kishimoto, H. Ohashi: *Rev. Sci. Instrum.*, 89, 093104 (2018).
- T. Kume, Y. Takei, S. Egawa, H. Motoyama, Y. Takeo, G. Yamaguchi, H. Mimura: *Rev. Sci. Instrum.*, 90, 021728 (2019).
- Y. Takeo, H. Motoyama, T. Shimamura, T. Kimura, T. Kume, Y. Matsuzawa, T. Saito, Y. Imamura, H. Miyashita, K. Hiraguri, H. Hashizume, Y. Senba, H. Kishimoto, H. Ohashi, H. Mimura : *Appl. Phys. Lett.*, **117**, 151104 (2020).
- H. Motoyama, H. Mimura : J. Phys. B: At. Mol. Opt. Phys., 48, 244002 (2015).
- 10) H. Mimura, Y. Takeo, H. Motoyama, Y. Senba, H.

Kishimoto, H. Ohashi: *Appl. Phys. Lett.*, **114**, 131901 (2019).

- H. Motoyama, S. Owada, G. Yamaguchi, T. Kume, S. Egawa, K. Tono, Y. Inubushi, T. Koyama, M. Yabashi, H. Ohashi, H. Mimura : *J. Synchrotron Rad.*, 26, 1406–1411 (2019).
- 12) Y. Kubota, H. Motoyama, G. Yamaguchi, S. Egawa, Y. Takeo, M. Mizuguchi, S. Himanshu, S. Owada, K. Tono, H. Mimura, I. Matsuda, M. Yabashi: *Appl. Phys. Lett.*, 117, 042405 (2020).
- Y. Senba, H. Kishimoto, Y. Takeo, H. Yumoto, T. Koyama, H. Mimura, H. Ohashi: J. Synchrotron Rad., 27, 1103 (2020).
- 14) Y. Matsuzawa, S. Yokomae, J. Guo, K. Hiraguri, H. Hashizume, H. Mimura : *Proc. SPIE 11108*, Advances in X -ray/EUV Optics and Components XIV, 1110803 (2019).

本山央人 (Hiroto MOTOYAMA) 東京大学大学院理学系研究科 (〒113-0033 東京都文京区本郷 7-3-1 理学部化 学東館 0227)。東京大学大学院工学系研究 科。博士 (工学)。《現在の研究テーマ》 フェムト秒軟 X 線パルスの集光技術開発 および物質との相互作用。《趣味》映画鑑 賞。

三村秀和 (Hidekazu MIMURA) 東京大学大学院工学系研究科 (〒113-8656 東京都文京区本郷7-3-1 工学部 14 号館 831 室)。大阪大学大学院工学研究 科。博士 (工学)。≪現在の研究テーマ≫ 精密加工法と高精度 X 線光学素子の開 発。≪趣味≫スキー。

=原 稿 募 集=

創案と開発欄の原稿を募集しています

- 内容:新しい分析方法・技術を創案したときの着想, 新しい発見のきっかけ,新装置開発上の苦心と問 題点解決の経緯などを述べたもの。但し,他誌に 未発表のものに限ります。
- 執筆上の注意:1) 会員の研究活動,技術の展開に参考になるよう,体験をなるべく具体的に述べる。 物語風でもよい。2)従来の分析方法や装置の問題点に触れ,記事中の創案や開発の意義,すなわち主題の背景を分かりやすく説明する。3)図や表,当時のスケッチなどを用いて理解しやす

くすることが望ましい。4) 原稿は図表を含めて 4000~8000 字(図・表は1枚 500 字に換算)と する。

◇採用の可否は編集委員会にご一任ください。原稿の 送付および問い合わせは下記へお願いします。

〒141-0031 東京都品川区五反田 1-26-2
五反田サンハイツ 304 号
(公社)日本分析化学会「ぶんせき」編集委員会
(E-mail:bunseki@jsac.or.jp)