

# 光ピンセットを用いたエアロゾル研究の最近の進歩

# 1 はじめに

2018年にノーベル物理学賞を受賞したArthur Ashkin博士は、1986年に光で微粒子を摘まんで操作す る「光ピンセット」を考案した<sup>1)</sup>。光ピンセット(レー ザー捕捉法)は、レーザー光を対物レンズで集光した際 に発生する光の圧力(放射圧)を用いて、微粒子を非接 触で捕捉し、3次元的に操作することができる実験手法 である。これまで光ピンセットの実験は主に液相中で行 われてきたが、最近、気相中の微粒子であるエアロゾル の研究に応用される例が増えてきた。本稿では、特に気 相中の微粒子を対象とした光ピンセットの研究に焦点を 絞り、その背景と最近の進展に関して解説する。

1970年にAshkin博士は、光ピンセットの実験に先 立ち,気相中に噴霧した水滴にレーザー光を照射する実 験を行った。その際に、水滴がレーザー光の進行方向に 向かって移動する様子が肉眼で確認できたと報告してい る<sup>2)</sup>。その翌年には、噴水でボールを浮揚させるよう に、ガラス球に下方からレーザー光を照射し、空気中に ガラス球を浮遊させる「光圧浮揚」の実験に成功してい る<sup>3)</sup>。これが、光の圧力で気相中に微粒子を浮遊させた 世界初の例であると思われる。また, 1975 年に Ashkin 博士は、空気中でシリコンオイルまたはグリセリン油滴 を浮遊させる実験に成功し、光ピンセットが雲のモデル 実験において大変有用な手法であると述べている4)。し かしながら、雲粒のモデルであるマイクロメートルサイ ズの水滴は、気相中で速やかに蒸発してしまうため、 1970~1990年代に行われた研究では、ガラスビーズや 蒸気圧の低い油滴が主に実験に用いられた5)~19)。実際 に、気相中の微小水滴を対象とした研究が報告され始め たのは、1999年以降である20)~31)。光ピンセットを用 いて微小水滴を空気中に非接触で浮遊させると、核発生 の足場を提供する固体表面の影響を受けないため、特に 過冷却や過飽和などの熱力学的準安定な液体の物性の計 測においてその威力が発揮される32)~38)。これらの熱力 学的準安定な微小水滴の物性は、雲の発生や降雨・降雪

ぶんせき 2021 1

石坂昌司

の初期過程を理解するために大変重要である。また,大 気中には多種多様なエアロゾルが混在しているため,微 粒子集合系の平均値解析では,エアロゾルが雲の発生や 気候に与える影響を正確に評価することは難しい。した がって,個々のエアロゾル微粒子を直接観測可能な分析 手法の開発が強く望まれる。しかしながら,従来の単一 集光レーザービーム型の光ピンセットは,「光を吸収す る微粒子」や「形状が球形から逸脱した微粒子」を安定 に捕捉できないという課題を有していた<sup>39)</sup>。最近これ らの問題を克服するために,光の放射圧に代わって,光 泳動力でエアロゾルを捕捉するタイプの新規なレーザー 捕捉法が開発されている。本進歩解説では,2015年か ら2020年に報告された,光を吸収する非球形の微粒子 を対象としたレーザー捕捉に関する研究について紹介す る。

# 光を吸収する非球形エアロゾルのレーザー 捕捉

## 2・1 放射圧と光泳動力

気相中の水滴に下方からレーザー光を集光すると、反 射や屈折により光の進行方向が変化する。この光の運動 量変化が、放射圧 (radiation pressure)を発生させる。 レーザー光が水滴の表面で反射することにより生じる放 射圧は散乱力とよばれ、水滴を光の進行方向に押す力と して働く (図1)。一方、水滴表面でレーザー光が屈折 することによって生じる放射圧は勾配力とよばれ、水滴 をレーザー光の焦点へ引き込む力として働く。図1に 示すように、水滴に働く重力と光の散乱力のバランスを 取ることにより、水滴を気相中に浮遊させることが出来 る。なお、可視光領域の波長を有するレーザー光を用い れば、水滴は可視光を吸収しないため熱が発生せず、水 滴の蒸発を抑制することができる。

一方,気相中に浮遊するススの様な黒色の微粒子に レーザー光を照射した場合には,光は吸収され熱が発生 する。温度の上昇に伴い気体の運動が激しくなり,微粒 子に対して力を及ぼす。この力は光泳動力 (photophoretic force) と呼ばれ,一般に,放射圧に比べ約 100 倍程度大きな力を生じることが知られている<sup>39)</sup>。し

Recent Advances in Optical Tweezers for Aerosol Research.



図1 光を吸収しない微小水滴は,集光レーザービーム型の光 ピンセットを用いて放射圧により空中の一点に捕捉する ことができる



図2 光を吸収するススをレーザー捕捉する場合には、光で取 り囲まれた空間を形成し、その中に光泳動力(斥力)で 閉じ込める

たがって、集光レーザービーム型の光ピンセットでは、 熱の発生に伴い「斥力」が生じ、黒色炭素微粒子を弾き 飛ばしてしまうため捕捉することができない(図2)。 そこで、光を吸収する微粒子をレーザー捕捉する場合に は、光で取り囲まれた空間を形成し、その中に微粒子を 斥力で閉じ込める方法が用いられる。このような斥力型 の捕捉空間に微粒子を閉じ込める方法であれば、微粒子 の形状は球形である必要は無く、非球形微粒子であって も捕捉することが可能である。光泳動力を用いたレー ザー捕捉法は、大別すると、シングルビーム型、ダブル ビーム型、万能型に分類することができる。以下にそれ ぞれの特徴と詳細について解説する。

#### 2・2 シングルビーム型

これまでに、単一のレーザー光を用いて、光で取り囲 まれた空間を形成する幾つかの光学系が提案されてい る。例えば、ガウシアンビームを半球状のレンズを用い て集光すると、レンズの球面収差によって焦点位置に光 の当たらない空間が形成される。Shvedovらは、この 光で囲まれた空間の中にグラファイト粒子を閉じ込めて 捕捉することに成功した<sup>400</sup>。レンズの球面収差を利用 する方法は、比較的単純な光学系であるため、光ファ イーバーやガルバノスキャナーとの組み合わせが容易で あり,光学系の設計の自由度が高いという利点を有して いる。また,光泳動力は捕捉力が大きいため,気相中で 微粒子を高速に動かすことが可能である。最近,この手 法を応用した「光トラッピングディスプレイ」が,ネイ チャー誌に報告された<sup>41)</sup>。Smalleyらは,空気中におい て光泳動捕捉した微粒子を三次元的に高速掃引するとと もに,RGB各色のレーザー光を同軸で微粒子に照射し て散乱させることで,空気中に立体映像を浮かび上がら せることに成功した。この映像は,空間のあらゆる方向 から眺めることができるため,気相中における光トラッ ピング技術は,立体映像を表示する3次元ディスプレ イへの応用と発展が注目される。

筆者らは、アキシコンレンズを用いてドーナツビーム を形成し、対物レンズの焦点位置に光で囲まれた空間を 形成し(図2)、ロウソクの燃焼により発生したススを 気相中で捕捉した<sup>42)</sup>。本手法は、捕捉したスス粒子か らの散乱光を対物レンズを用いて効率良く集光できるた め、ラマンスペクトルの測定に利点を有する。黒色炭素 粒子を気相中に非接触で保持し、個々の微粒子の化学組 成を非破壊で計測するできるため、黒色炭素微粒子の大 気中での化学反応を明らかにする有用な分析手法である といえる。

最近, He らは, チタンサファイヤレーザーからの出 力を2本に分岐して、一方のビームをポンプ光として エタノールを満たしたセルに集光し、もう一方のビーム を向かい合わせに重ねることで非線形光学効果を誘起し てドーナツビームを形成し、気相中においてグラファイ ト微粒子を捕捉することに成功した43)。なお、ドーナ ツビームの空洞サイズは、ポンプ光の強度を変化させる ことにより制御することが可能であるため、微粒子の大 きさに合わせて捕捉空間の大きさを任意に変化させるこ とができる光学系である。また、Esseling らは、二軸 結晶を用いて断面がアルファベットの「C」型の強度分 布を有するビームを形成し,光で取り囲まれた空間に開 口部を設けた<sup>44)</sup>。インクジェットのノズルから噴射さ れた微小液滴をこの開口部から捕捉空間内へ導入するこ とに成功した。なお、光の開口部は、レーザーの偏光を 制御することにより開閉することが可能である。このよ うに、光で取り囲まれた空間のサイズを可変に制御する 技術や、空間の一部を開閉する技術が開発され、シング ルビーム型光泳動捕捉法は、光吸収を有する単一エアロ ゾルの分析手法としての応用が期待される。

#### 2・3 ダブルビーム型

これまでに、2本のレーザー光を用いて、光で取り囲 まれた空間を形成する幾つかの光学系が提案されている。 Panらは、アルゴンイオンレーザーの波長488 nm レー ザー光線をアキシコンレンズを用いてドーナツ状に成形 し、二本に分岐した後、二つの対物レンズを用いて集光 して、二つの円錐が向かい合わせに重なり合った空間を 形成し(図3)、気相中においてカーボンナノチューブ を捕捉することに成功した<sup>45)</sup>。このようなダブルビー ム型の捕捉光学系は、シングルビーム型の光学系に比 べ、光で閉じられた空間の明暗のコントストが優れてお り、微粒子を空中の一点に長時間、安定に保持しておく ことができるため、単一微粒子の分光計測を行うことが 容易であるという特徴を有している。

最近, Wang らは、ダブルビーム型光泳動捕捉とラマ ン分光装置を組み合わせて、気相中において捕捉した花 粉や胞子などのバイオエアロゾルのラマンスペクトルの 測定に成功した<sup>46)</sup>。また, Gong らは, カーボンナノ チューブ、シリカ微粒子、蛍光色素をドープしたポリエ チレンマイクロビーズ、花粉や胞子などを気相中におい て保持し、それらのラマンスペクトルの経時変化を報告 している47)48)。これらの実験では、2本のレーザービー ムを集光するための対物レンズと、微粒子からのラマン 散乱を集光するための対物レンズの、合計三つの対物レ ンズを用いている。このため、ダブルビーム型光泳動捕 捉の光学系は、高価な対物レンズを複数用いる必要があ るうえに、それぞれの対物レンズの焦点位置を空間的に 一致させるための光学調整が難しいといった問題点が存 在する。このような問題点を克服するために、最近、ダ ブル―ビーム型光泳動捕捉の変形型である、共焦点型と 呼ばれる光学系が考案された(図4)。共焦点型は、対 物レンズを二つ用いる代わりに、一つの対物レンズをパ ラボリックミラーに置き換えて、単一のレーザービーム を反射させて焦点位置に捕捉空間を形成する手法である。 Gong らは、共焦点型の光学系を用いて、気相中におい て単一のカーボンナノチューブを捕捉することに成功し た49)50)。また、共焦点型の光学系とキャビティーリン



図3 ダブルビーム型の光学系



グダウン分光法を組み合わせ、単一エアロゾル微粒子の 吸光度を計測した研究について報告している<sup>51)</sup>。最近 では、ダブルアキシコンレンズとパラボリックミラーを 用いることにより、対物レンズを全く用いない新しいダ ブルビーム型の光学系も提案されている<sup>52)</sup>。

## 2.4 万能型

万能型は「光を吸収する微粒子」と「光を吸収しない 微粒子」の両方を気相中において捕捉するために考案さ れたものである<sup>53)</sup>。Regging らは、アキシコンレンズ を用いてレーザービーム(488 nm)をドーナツ状に成 形し、ミラーとレンズを用いてドーナツビームを鉛直方 向に集光した。この場合、レーザー光の焦点の前後に光 の円錐が形成され、その断面はアルファベットの「X」 の様な強度分布を示すことになる(図5)。光を吸収す る微粒子は、重力と光泳動力のつり合いにより焦点上部 の円錐形の空間に捕捉することができ、光を吸収しない 微粒子は、放射圧により焦点の部分に捕捉することがで きる。Regging らは、万能型の光学系を用いて、ガラス ビーズ (球形・光吸収無し), 蛍光性ポリマービーズ (球形・光吸収有り)、ウシ血清アルブミン(非球形・光 吸収無し)、黒色の胞子(非球形・光吸収有り)を気相 中において捕捉することができることを示した53)。こ の様に万能型の光学系は、光吸収の有無や形状によらず 微粒子を捕捉することができるため、近年、エアロゾル の研究に応用される例が増えてきた。Pan らは、万能型 光捕捉光学系を用いて、気相中において黒色の胞子や火 山灰をレーザー捕捉し、後方散乱光の空間パターンを解 析することで微粒子の表面粗さや配向を解析できること を示した<sup>54)55)</sup>。Kalume らは、単一エアロゾル微粒子の ラマンスペクトルを計測する万能型光捕捉光学系を構築 し56)、単一エアロゾルの空間分解ラマン分光計測や液-液相分離過程に関する研究を報告している57)~59)。万能 型の光学系は、対物レンズを用いないため、微粒子の周 りに大きな空間を確保することができる。このような空 間的な自由度の高さを利用して、Pan らは、万能型光捕 捉光学系とノズルを組み合わせて,フロー条件下でエア



ロゾルを濃縮する技術を開発した<sup>60)</sup>。万能型の捕捉光 学系は、「光を吸収する微粒子」と「光を吸収しない微 粒子」の両方を捕捉することができる利点を有している 一方で、シングルビーム型やダブルビーム型に比べ、微 粒子を捕捉する力が弱いという弱点を有している。最 近、この弱点を克服するため、パラボリックミラーを用 いて微粒子に対して上下方向からレーザーを照射する新 たな光学系が提案されている<sup>61)</sup>。万能型のレーザー捕 捉法は汎用性が高いため、今後、様々なエアロゾルの研 究に応用されることが期待される。

# 3 ま と め

気候変動は世界の研究者が取り組むべき重要な研究課 題である。飛躍的なコンピュータの性能向上により、地 球規模の気候シミュレーションの精度も向上してきた。 しかしながら、エアロゾルと雲の相互作用は、今日の気 候変動予測における最大の不確定要素となっている。例 えば、化石燃料の不完全燃焼により発生するスス(黒色 炭素粒子)は、太陽光を吸収し大気の温度を上昇させ る。この黒色炭素粒子の熱源としての働きは、二酸化炭 素に次いで地球温暖化への影響が大きいと予想されてい る。一方、黒色炭素粒子が雲の発生を促すと、太陽光を 遮り、大気の温度を低下させる。このように黒色炭素粒 子は、温暖化と寒冷化の両方の因子として働くため、気 候への影響を正確に見積もることが難しい微粒子であ る。一般に、炭素粒子表面は疎水性であるため、発生し た直後のススは雲凝結核として振舞わないが、大気中を 輸送される間に活性酸素などと反応し、表面が親水化し て雲凝結核としての機能を獲得すると考えられている。 光ピンセットを駆使して、黒色炭素微粒子ごとに、どの ような化学反応が進行し、また、どの湿度で水滴に変化 するのかを分析することで、黒色炭素微粒子を足場とし た雲粒の発生過程を気候変動予測の計算に組み込むため の基礎的なデータを得ることができると予想される。ま た、光ピンセットは、微粒子を空中の一点に非接触で保 持することができるため、様々な計測法と組み合わせる ことが可能である (表1)。したがって、光ピンセット

表1 光ピンセットを用いた単一エアロゾルの計測法

| 計測法                 | 情報                     | 文 献                                                                                            |
|---------------------|------------------------|------------------------------------------------------------------------------------------------|
| ラマン分光法              | 化学組成, 液滴直径,<br>温度      | $\begin{array}{c} 11) \sim \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
| 蛍光分光法               | 励起状態寿命,粘度              | 26)37)                                                                                         |
| 準弾性レーザー<br>散乱法      | 表面張力                   | 31)                                                                                            |
| キャビティー<br>リングダウン分光法 | 吸光度                    | 51)                                                                                            |
| 後方光散乱               | 粒子サイズ, 形状,<br>表面粗さ, 配向 | 54) 55)                                                                                        |

は、エアロゾル個々の物理・化学的な性質を計測する手 法として今後の発展が大いに期待される。

### 文 献

- A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu: *Opt. Lett.*, **11**, 288 (1986).
- 2) A. Ashkin: Phys. Rev. Lett., 24, 156 (1970).
- A. Ashkin, J. M. Dziedzic: Appl. Phys. Lett., 19, 283, (1971).
- 4) A. Ashkin, J. M. Dziedzic : Science, 187, 1073 (1975).
- A. Ashkin, J. M. Dziedzic: Appl. Phys. Lett., 24, 586 (1974).
- A. Ashkin, J. M. Dziedzic: Phys. Rev. Lett., 38, 1351 (1977).
- A. Ashkin, J. M. Dziedzic: Appl. Phys. Lett., 30, 202 (1977).
- 8) A. Ashkin: Science, 210, 1081 (1980).
- 9) A. Ashkin, J. M. Dziedzic : Appl. Opt., 19, 660 (1980).
- T. R. Lettieri, W. D. Jenkins, D. A. Swyt: *Appl. Opt.*, 20, 2799 (1981).
- 11) T. R. Lettieri, R. E. Preston: Opt. Commun., 54, 349 (1985).
- 12) R. Thurn, W. Kiefer : Appl. Opt., 24, 1515 (1985).
- 13) G. Schweiger : J. Raman Spectrosc., 21, 165 (1990).
- 14) J. C. Carls, G. Moncivais, J. R. Brock : *Appl. Opt.*, **29**, 2913 (1990).
- 15) J. Popp, M. Lankers, K. Schaschek, W. Kiefer, J. T. Hodges : *Appl. Opt.*, **34**, 2380 (1995).
- 16) C. Esen, T. Kaiser, G. Schweiger : Appl. Spectrosc., 50, 823 (1996).
- 17) M. Trunk, J. Popp, M. Lankers, W. Kiefer : Chem. Phys. Lett., 264, 233 (1997).
- R. Omori, T. Kobayashi, A. Suzuki: Opt. Lett., 22, 816 (1997).
- J. Musick, J. Popp, M. Trunk, W. Kiefer : *Appl. Spectrosc.*, 52, 692 (1998).
- 20) J. F. Lubben, C. Mund, B. Schrader, R. Zellner : J. Mol. Struct., 481, 311 (1999).
- 21) N. Magome, M. I. Kohira, E. Hayata, S. Mukai, K. Yoshikawa: J. Phys. Chem. B, 107, 3988 (2003).
- 22) R. J. Hopkins, L. Mitchem, A. D. Ward, J. P. Reid : *Phys. Chem. Chem. Phys.*, 6, 4924 (2004).
- 23) M. D. King, K. C. Thompson, A. D. Ward : J. Am. Chem. Soc., 126, 16710 (2004).
- 24) D. R. Burnham, D. Mcgloin: Opt. Exp., 14, 4175 (2006).
- 25) N. Jordanov, R. Zellner : Phys. Chem. Chem. Phys., 8, 2759 (2006).
- 26) S. Ishizaka, Y. Suzuki, N. Kitamura : *Phys. Chem. Chem. Phys.*, **12**, 9852 (2010).
- 27) S. Ishizaka, K. Yamauchi, N. Kitamura : *Bunseki Kagaku*,62, 361 (2013).
- 28) S. Ishizaka, K. Yamauchi, N. Kitamura : Anal. Sci., 29, 1223 (2013).
- 29) S. Ishizaka, K. Yamauchi, N. Kitamura : Anal. Sci., 30, 1075 (2014).
- 30) S. Ishizaka, J. Ma, T. Fujiwara, K. Yamauchi, N. Kitamura : Anal. Sci., 32, 425 (2016).
- 31) T. Endo, K. Ishikawa, M. Fukuyama, M. Uraoka, S. Ishizaka, A. Hibara : J. Phys. Chem. C, 122, 20684 (2018).
- 32) C. Mund, R. Zellner : J. Mol. Struct., 661, 491 (2003).

- 33) C. Mund, R. Zellner: ChemPhysChem, 4, 638 (2003).
- 34) K. Taji, M. Tachikawa, K. Nagashima : *Appl. Phys. Lett.*, 88, 141111 (2006).
- 35) S. Ishizaka, T. Wada, N. Kitamura : Chem. Phys. Lett., 506, 117 (2011).
- 36) H. Suzuki, Y. Matsuzaki, A. Muraoka, M. Tachikawa : J. Chem. Phys., 136, 234508 (2012).
- 37) C. Fitzgerald, N. A. Hosny, H. Tong, P. C. Seville, P. J. Gallimore, N. M. Davidson, A. Athanasiadis, S. W. Botchway, A. D. Ward, M. Kalberer, M. K. Kuimova, F. D. Pope : *Phys. Chem. Chem. Phys.*, **18**, 21710 (2016).
- 38) S. Ishizaka, F. Q. Guo, X. M. Tian, S. Seng, Y. A. Tobon, S. Sobanska : Bull. Chem. Soc. Jpn., 93, 86 (2020).
- 39) Z. Y. Gong, Y. L. Pan, G. Videen, C. J. Wang : J. Quant. Spectrosc. Radiat. Transfer, 214, 94 (2018).
- 40) V. G. Shvedov, C. Hnatovsky, A. V. Rode, W. Krolikowski : Opt. Express, 19, 17350 (2011).
- 41) D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, J. Peatross : *Nature*, **553**, 486 (2018).
- 42) M. Uraoka, K. Maegawa, S. Ishizaka : Anal. Chem., 89, 12866 (2017).
- 43) B. He, X. M. Cheng, H. Zhang, H. W. Chen, Q. Zhang, Z. Y. Ren, S. Ding, J. T. Bai : *Appl. Phys. Express*, **11**, 052501 (2018).
- 44) M. Esseling, C. Alpmann, J. Schnelle, R. Meissner, C. Denz: Sci. Rep., 8, 5029 (2018).
- 45) Y. L. Pan, S. C. Hill, M. Coleman : Opt. Express, 20, 5325 (2012).
- 46) C. J. Wang, Y. L. Pan, S. C. Hill, B. Redding : J. Quant. Spectrosc. Radiat. Transfer, 153, 4 (2015).
- 47) Z. Y. Gong, Y. L. Pan, G. Videen, C. J. Wang : *Chem. Phys. Lett.*, 689, 100 (2017).
- 48) Z. Y. Gong, Y. L. Pan, G. Videen, C. J. Wang : Anal. Chim. Acta, 1020, 86 (2018).
- 49) Z. Y. Gong, Y. L. Pan, C. J. Wang : Rev. Sci. Instrum., 87,

103104 (2016).

- 50) C. J. Wang, Z. Y. Gong, Y. L. Pan, G. Videen : *Appl. Phys. Lett.*, **109**, 011905 (2016).
- 51) Z. Y. Gong, Y. L. Pan, C. J. Wang: Opt. Express, 25, 6732 (2017).
- 52) Z. K. Yang, X. L. Lin, H. Zhang, X. H. Ma, Y. G. Zou, L. Xu, Y. T. Xu, L. Jin: Appl. Opt., 58, 2471 (2019).
- 53) B. Redding, Y. L. Pan: Opt. Lett., 40, 2798 (2015).
- 54) Y. L. Pan, C. J. Wang, L. A. Beresnev, A. J. Yuffa, G. Videen, D. Ligon, J. L. Santarpia : *Appl. Opt.*, 56, B1 (2017).
- 55) R. Fu, C. J. Wang, O. Munoz, G. Videen, J. L. Santarpia, Y. L. Pan : *J. Quant. Spectrosc. Radiat. Transfer*, **187**, 224 (2017).
- 56) A. Kalume, L. A. Beresnev, J. Santarpia, Y. L. Pan : Appl. Opt., 56, 6577 (2017).
- 57) A. Kalume, E. Zhu, C. J. Wang, J. Santarpia, Y. L. Pan : Opt. Lett., 42, 5113 (2017).
- 58) A. Kalume, C. Wang, J. Santarpia, Y. L. Pan : *Chem. Phys. Lett.*, **706**, 255 (2018).
- 59) A. Kalume, C. Wang, J. Santarpia, Y. L. Pan : *Phys. Chem. Chem. Phys.*, **20**, 19151 (2018).
- Y. L. Pan, A. Kalume, C. J. Wang, J. L. Santarpia : Aerosol Sci. Tech., 52, 13 (2018).
- Y. L. Pan, A. Kalume, I. C. D. Lenton, T. A. Nieminen, A. B. Stilgoe, H. Rubinsztein–Dunlop, L. A. Beresnev, C. J. Wang, J. L. Santarpia : *Opt. Express*, 27, 33061 (2019).



石坂昌司 (Shoji ISHIZAKA) 広島大学大学院先進理工系科学研究科 (〒 739-8526 広島県東広島市鏡山 1-3-1)。 北海道大学大学院理学研究科化学専攻博士 課程中退。博士(理学)。≪現在の研究テー マ≫光ピンセットを用いた,エアロゾルの 物理化学的性質に関する研究。 E-mail:ishizaka@hiroshima-u.ac.jp

──原 稿 募 集

#### トピックス欄の原稿を募集しています

- 内容:読者の関心をひくような新しい分析化学・分析 技術の研究を短くまとめたもの。
- 執筆上の注意:1)1000字以内(図は1枚500字に 換算)とする。2)新分析法の説明には簡単な原 理図などを積極的に採り入れる。3)中心となる 文献は原則として2年以内のものとし,出所を 明記する。
  - なお,執筆者自身の文献を主として紹介する

ことは御遠慮ください。又,二重投稿は避けて ください。

- ◇採用の可否は編集委員会にご一任ください。原稿の 送付および問い合わせは下記へお願いします。
  - 〒141-0031 東京都品川区西五反田 1-26-2
    五反田サンハイツ 304 号
    (公社)日本分析化学会「ぶんせき」編集委員会
    (E-mail:bunseki@jsac.or.jp)